Tools for Loading MEDLINE into a Local Relational Database

Diane E. Oliver1, Gaurav Bhalotia 2, Ariel S. Schwartz2, Russ B. Altman1, Marti A. Hearst3

1 Department of Genetics, Stanford University

2 Computer Science Division, University of California, Berkeley

3 School of Information Management & Systems, University of California, Berkeley

Abstract

Background

Researchers who use MEDLINE for text mining, information extraction, or natural language processing may need a copy of MEDLINE that they can manage locally. The National Library of Medicine (NLM) distributes MEDLINE in eXtensible Markup Language (XML)-formatted text files, but it is difficult to query MEDLINE in that format. We have developed software tools to parse the MEDLINE data files and load their contents into a relational database. Given the increasing importance of text analysis in biology and medicine, we believe these tools provide helpful computing infrastructure for researchers.

Results

We ran the software tools at two different sites on a version of MEDLINE containing all citations through April 2003. At one site, we ran a Java program to install MEDLINE into IBM’s DB2 database management system. Parsing the XML input file and loading the data into the database took 3 days and 4 hours and resulted in a MEDLINE database that used 46 gigabytes of space. At the other site, we ran the same program with slight modifications to install MEDLINE into Oracle’s 9i database management system. This process took 12 days and 15 hours, and used 37.7 gigabytes of space. Loading at the first site was faster because it was done on a single machine, rather than across several machines. We also developed a Perl program that parses and loads MEDLINE, and ran this program at one site. In this case, we used a two-stage process. Parsing was done in batches of 50 XML input files at a time, and batches were run in parallel. The largest batch took 1 day and 7 hours to be processed. After parsing, loading all of MEDLINE took 1 day and 9 hours. The resulting MEDLINE database used 31.6 gigabytes of space.

Conclusions

Relational database (RDBMS) technology supports indexing and querying of very large datasets, and can accommodate a locally-stored version of MEDLINE. RDBMS systems support a wide range of queries and facilitates certain tasks that are not directly supported by the application programming interface to PubMed. Because there is variation in hardware, software, and network infrastructures across sites, we cannot predict the exact time required for a user to load MEDLINE, but our results suggest that performance of the software is reasonable. Our database schemas and conversion software are publicly available at http://biotext.berkeley.edu and at http://www.pharmgkb.org/ .

Background

MEDLINE is a large biomedical bibliographic database that is well known to users around the globe. It contains over 12 million citations from over 4,600 journals. MEDLINE is a rich source of biomedical text that lends itself well to research on text mining, information extraction, and natural language processing in biomedical domains. The usual way in which users query MEDLINE is through PubMed, the web-based interface and search engine provided by the National Library of Medicine (NLM) [1]. PubMed allows individuals to conduct searches directly by entering search terms on web pages and viewing results, and supports software-based queries across the Internet with programming utilities offered by the NLM [2]. Because we were interested in developing custom-made programs that query MEDLINE, the programming utilities offered by the NLM were an obvious choice to consider. However, due to risks of server overload, the NLM places limits on the number of queries that a user can send in a given time interval, and requests that large-volume queries be done on nights or weekends [3]. By contrast, a local version of MEDLINE gives software developers greater control over how they use the data, and facilitates the development of customizable interfaces. In this report, we describe the design and implementation of the database schema and database loading tools we have built in order to enable others to produce similar systems at their sites.

The entire content of MEDLINE is available as a set of text files formatted in XML (eXtensible Markup Language) [4]. The NLM distributes these files at no cost to the licensee, but the files are large and not easily searched without additional indexing and search tools. For example, in the 2002 release of MEDLINE there are 396 files, and the total size of these files is about 40 gigabytes (GB). Although it is relatively inexpensive to store 40 GB of data, it is not easy to manipulate data of that magnitude without good software support. Relational databases are a natural choice for storing MEDLINE because they are able to handle large amounts of data, offer built-in approaches to query optimization, and enable the developer to create indexes. Additionally, the standard query language for relational databases, SQL (Structured Query Language), enjoys widespread familiarity and can be integrated with text-database queries in some commercial systems.

In the remainder of this report, we describe the software tools we developed for converting MEDLINE in XML files to MEDLINE in a relational database, and provide a few sample queries that demonstrate the flexibility of the resulting system.

Implementation

Database Schema

The NLM provides a DTD (Document Type Definition) that defines the structure of data in the MEDLINE XML files [5-7]. From this DTD, we designed a relational database schema. Although developers of MEDLINE at the NLM maintain their own version of MEDLINE in a relational database, the schema they use is not directly applicable to our purposes, because their implementation contains tables and data that are used for maintenance and that are not relevant to external users. Thus, it was appropriate for us to design our own schema based on the specific content of the XML files, as defined by the DTD.

There are multiple ways in which one can design a schema from the same DTD, because DTD elements and attributes can be mapped to tables and fields in different ways. In general, we aimed to design a schema that takes two factors into account: (1) loading records associated with 12 million citations into a database is very time consuming, and the time can be minimized if lookups to the database are minimized during loading, and (2) users will want to submit queries that conform closely to their conceptual view of the content, and fewer tables are often easier for a user to think about when forming queries. The second factor can be addressed by introducing views that present a de-normalized logical schema to the user. However, queries issued against views like these must be expanded by the RDMS’s query preprocessor, and therefore introduce a large computational overhead in the form of multiple joins.

In an approach similar to the one taken in Data Warehouses, we prefer to de-normalize the physical schema in order to improve read-only query performance, which is the typical data access pattern in our workload. The typical table contains a PubMed identifier (PMID) in one column, and data related to that PMID in the remaining columns. Figure 1 shows an example of such a table and its original representation of content in the DTD.

We created two MEDLINE database schemas—one that is used with the Java software and the other with the Perl software. Here we describe the schema created for the Java code, but the principles used for the other schema are similar
. Both schemas include representation of nearly all elements in the DTD, but omit the element DeleteCitations (because it is relevant to MEDLINE update files, not to the input file we used).

The main table in the schema is MEDLINE_citation. The MEDLINE_citation table contains the PMID as the primary key and has additional columns that correspond to single-valued elements in the DTD, where the values of those elements depend on the PMID. The MEDLINE_abstract table is similar in that it has a PMID as the primary key and columns of data that depend on the PMID. Since document abstracts are larger than the other data types, we placed them in a separate table. However, since abstracts are stored as CLOBs (Character Large Objects), they are not stored in the same pages as the rest of the fields in the MEDLINE_abstract table. In a future implementation, we plan to remove the MEDLINE_abstract table from the schema, and add the abstract_text field as a CLOB in the MEDLINE_citation table.

Some tables in the schema have more than one row corresponding to the same PMID. Columns in these tables map to multi-valued elements in the DTD. Examples are the table MEDLINE_keyword_list, which stores multiple values of keyword for a given PMID, and MEDLINE_gene_symbol_list, which stores multiple values of gene_symbol for a given PMID.

The element called Article in the DTD has a one-to-one relationship between an article and a PubMed identifier. Rather than giving it its own table, we put single-valued data from the element Article into the table MEDLINE_citation.

To keep track of the file from which data were read, we added the field xml_file_name to the MEDLINE_citation table that indicates the XML file name that was the source of that data. This field does not correspond to any element in the DTD structure, but allows the database administrator to go back to the original XML file if necessary to find the original source of the data.

The remaining tables vary in structure, but are designed to fulfill the cardinality of elements specified in the DTD, and to make loading the data as fast as possible. For example, the MEDLINE_author table has a column for PMID and remaining columns to represent last name, forename, first name, middle name, initials, suffix, affiliation, and collective name. Because we included the PMID in this table, we repeat a given author’s name every time we enter a new article by that author. We could have made a single table with only one entry for each author and a unique numeric primary key for that author, and made a separate table with a field PMID that could be joined by a foreign key to the MEDLINE_author table. However, the creation of such primary keys requires lookups to the database as new data are loaded to see if that author already exists. Such lookups for over 12 million citations and multiple authors per citation would significantly increase the loading time. Also, such an approach would require resolution of ambiguous author names at loading time, and would require an extra join operation at querying time. We therefore avoided generating numeric primary keys and repeated data where necessary. Journals are treated as an exception and are stored only once, with the ISSN (International Standard Serial Number) serving as the primary key for each issue of the journal. Books would be handled similarly if they were stored in the database.

A final aspect of our design intended to reduce loading time was to avoid specifying primary-key constraints, even when one or more columns uniquely specified a row and determined the values in remaining columns. For example, a composite primary key could be specified for the table MEDLINE_mesh_heading_list from the fields pmid and descriptor_name. The combination of these two fields forms a unique record, and the remaining field descriptor_name_major_yn (which indicates whether the descriptor name is a major heading or not for that article) depends on those two fields. However, we assume that the original XML file would not inadvertently contain the same PMID and descriptor name twice, and therefore, we do not need to enforce the primary-key constraint. By avoiding the primary-key constraint, data will load faster because the database does not have to check for violation of the constraint.

Figure 2 shows relationships among the tables. Tables MEDLINE_journal and MEDLINE_book are parents of MEDLINE_citation, and MEDLINE_citation is a parent of eleven other tables. The last table in the diagram (represented as Table 8.1) is MEDLINE_mesh_heading_qualifier, which is a child of MEDLINE_mesh_headings. Multiple qualifiers can be associated with each MeSH heading for a given citation.

Parsing and Loading Software

The software performs two basic tasks: (1) it parses the XML files to collect data, and (2) it loads the data into the database. Figure 3 shows the steps involved. Data can be loaded as they are collected, or can be written out to disk initially, and loaded later. The software offers both options to the user, since document parsing is processor intensive, and data insertion is disk intensive. The two tasks can be executed at different times to accommodate other demands on the server.

There are two types of application programming interfaces (APIs) for parsing XML files—the tree-based DOM (Document Object Model) and the event-based SAX (Simple API to XML) [8]. We chose the latter. A DOM parser organizes data from the XML file into a tree of nodes, and requires that the entire document be read in and stored in memory prior to writing out any data. Thus, the DOM parser is impractical for large documents whose data do not fit in memory. The SAX parser, however, receives data through a stream, and recognizes the beginning or end of a document, element, or attribute in an event-driven manner. It writes out data as it proceeds through the parsing process, and there is no need for the entire document to fit into memory. In XML MEDLINE, one document is a single XML-formatted MEDLINE file, and in the 2002 release, the majority of files range in size from 60 to 142 megabytes (MB). Using the DOM parser would put a great strain on resources. In addition, the SAX parser is faster because it does not need to create an entire XML tree structure, map that structure to the program’s data structures, and then throw out the original tree. Instead, it creates its own data structures as events are handled.

We implemented both a Java version and a Perl version of software that parses and loads MEDLINE—Java MEDLINEParser and Perl ParseMEDLINE. The Java version uses the Java SAX parser to parse the XML files, and JDBC (Java Database Connectivity) to communicate with the database. The Perl version uses the Perl SAX parser, and Perl DBI (Database Interface) to communicate with the database. We describe the Java implementation here.

Use of the SAX parser requires code to be written that specifies the data model for objects in the domain. The data model is an object model that represents tables in the schema. The SAX parser also requires code that listens for SAX events and that maps elements—or nodes in the XML tree—to the object model. We created two main classes upon which our code is based: GenericXMLParser and NodeHandler. GenericXMLParser is responsible for generating events when nodes corresponding to objects in the object model are encountered in the document, and NodeHandler provides the event listener. Together, these two classes form a generic approach to reading in XML data and writing out those data to tables; they are independent of the DTD or table structure.

As the parser processes the document, it decides how to handle the semantics of data at each node and determines whether to store parsed data at that node or to delegate the event to a child handler. For each node that corresponds to a table, there is a handler class that extends NodeHandler. A handler defines metadata for the node, and encodes any non-standard behavior at that node. An example of metadata is shown in Table 1. Metadata include column names for the table and an XML element associated with each column name. An XML element is represented by a concatenation of the name of the element that holds the data value, and elements higher up in the element stack up to the node that corresponds to the object, or table. This concatenated name gives a unique representation of the element that holds the data. Finally, the data type is given for each column. The column names and data types match those specified in the database schema.

Since NodeHandler and GenericXMLParser are generic, they can be used to write similar parsers for other XML documents. We have, for example, used these classes to write a parser for MeSH (Medical Subject Headings) XML files, which are also distributed by the NLM.

An optional feature is validation. XML files provided by the NLM in XML files are valid XML files, but we provide additional validation that checks to be sure that all element tags in the XML data file have been handled by the parser and that all data have been inserted into the database. A developer who is extending the software to cover new tables can use this feature to ensure that metadata definitions are correct in classes that extend NodeHandler.

Results and Discussion

In the course of our development work, we applied the software tools to three different relational database products. Our development team included researchers from the University of California at Berkeley and from Stanford University. Developers from the Berkeley group initially experimented with PostgreSQL, since PostgreSQL is an open-source relational database and is freely available and modifiable. For the final implementation, however, they chose IBM’s DB2 8.1 over PostgreSQL because it can load data more efficiently and optimizes queries that are run subsequently over the database. DB2 also has a text-search extender, which enables keyword search over the content of MEDLINE records. Developers from the Stanford group used Java MEDLINEParser developed by the Berkeley group and ran it on Oracle 9i. Like DB2, Oracle 9i offers word-based indexing of columns that contain text fields. Word-based indexing is especially useful for the title and abstract fields.

Memory and Time Measurements

It took 76 hours (3 days and 4 hours) for the Berkeley group to run MEDLINEParser to load all of MEDLINE (396 XML files) in DB2 at an average speed of 11.5 minutes per file, and 303 hours (12 days and 15 hours) for the Stanford group to do so in Oracle. Differences in loading time are probably due more to differences in network and server configurations used at the two sites than to differences in the two database products.

The most important difference between the configurations at the two sites was that the Berkeley group performed all tasks on a single system, whereas the Stanford group utilized a more complex set of networked systems. At Berkeley, MEDLINEParser was run on a Pentium IV Intel(R) XeonTM processor 2.00GHz dual-processor system, with 1 GB of random access memory (RAM). It had an Integrated Drive Electronics (IDE) hard disk with a rotational speed of 7200 revolutions per minute (RPM), and data were stored on the same system. At Stanford, MEDLINEParser was run on a Sun Enterprise 3500 server with eight 400-MHz processors and 4 GB of RAM. The database was stored on a Sun Fire V880 server configured with four 750 MHz processors, 8 GB of RAM, and storage-area-network (SAN) storage. The two systems were connected by an Ethernet network with two firewalls between them.

The space requirement for the DB2 instance of MEDLINE at Berkeley was 46.3 GB, of which 10.4 GB are consumed by the abstract text CLOBs, 18.1 GB by the other tables, and 17.8 GB by indexes. The space requirement for the Oracle instance of MEDLINE at Stanford was 37.7 GB. The smaller size may be due, in part, to the decision not to use the CLOB datatype for abstracts at Stanford, but rather to use the character datatype (VARCHAR2), which is limited to 4,000 characters. In addition, additional indexing was included in the Berkeley instance that was not included in the Stanford instance.

In addition to using Java MEDLINEParser to create an instance of MEDLINE in Oracle, the Stanford group used Perl ParseMEDLINE to load an additional instance of MEDLINE. Parsing and loading of this instance of the database took place in a two-stage process. In the first stage, Perl ParseMEDLINE parsed the XML files and wrote the data to disk in comma-separated-value files. To reduce processing time, the 396 XML input files were divided into 8 sets of about 50 files each, and the sets were processed in parallel. The maximum time required for processing one set was 31 hours (1 day and 7 hours). The output comma-separated-value files required 25.6 GB of disk space. The system used for this processing stage was the same Sun Enterprise 3500 server described above. In the second stage, the Stanford team loaded data from the comma-separated-value files into the Oracle database using SQL*Loader, a data loading tool provided by Oracle. This stage took 33 hours (1 day and 9 hours) and used 31.6 GB of space in the Oracle database. The space required for the MEDLINE database generated by the Perl program was smaller than the database created by the Java program. The difference can be attributed to differences in the two database schemas.

Sample Queries

Certain queries that cannot be done easily through the PubMed application programming interface (API) can be done in a single SQL query to our relational database. In this section, we show the results of a several sample queries, run on a version of MEDLINE that contains citations through April 2003.

 A very simple query is one that retrieves all PMIDs in MEDLINE, where pmid is a column in table MEDLINE_citation.

SELECT pmid

FROM MEDLINE_citation

Although typical users of PubMed would not be interested in such a query, we are managing MEDLINE as a complete database, and need to have access to all PMIDs.

Another capability of this system that distinguishes it from PubMed is the ability to rank order journals according to how many articles those journals have published that have been assigned a particular MeSH term. In the query shown below, the number of publications indexed with the MeSH term (or descriptor_name) “Leukemia” is shown for each journal (where MEDLINE_ta is the title abbreviation of a journal).

SELECT mc.MEDLINE_ta, count(mc.pmid) as num_of_publications

FROM MEDLINE_citation mc

 join MEDLINE_mesh_heading msh on

 mc.pmid = msh.pmid

WHERE msh.descriptor_name = 'Leukemia'

GROUP BY mc.MEDLINE_ta

ORDER BY count(mc.pmid) desc

 FETCH first 10 rows only;

This result of this query is a table consisting of journals paired with number of publications; note that the query does not normalize for the fact that some journals have been publishing for more years than others, and publish more articles than others:

Blood

940

Cancer

619

Rinsho Ketsueki

610

Cancer Res

588

Br J Haematol

524

Bone Marrow Transplant

520

Lancet

515

Leuk Res

476

Leukemia

463

The N Engl J Med

342

SQL includes the “LIKE” operator which allows for partial matches. By modifying the query above to change the seventh line to read “WHERE msh.descriptor_name LIKE 'Leukemia%',” we change the query to match all MeSH terms that begin with “Leukemia”. The query would thus include terms such as “Leukemia, Subleukemic” and “Leukemia, Feline.” This results in dramatically more results, although the rank ordering is not all that different:

Blood

6721

Cancer Res

4653

Leukemia

4640

Br J Haematol

3918

Leuk Res

3061

Cancer

2772

Rinsho Ketsueki

2628

Cancer Genet Cytogenet

2192

Bone Marrow Transplant

2123

Lancet

1931

MeSH terms are organized into a hierarchy, and each MeSH term has associated with it one or more descriptor tree numbers that indicate its place in the hierarchy. The Berkeley group developed additional code to parse MeSH XML data files (which can be downloaded from the NLM website [9]), and added MeSH tree data to the MEDLINE database. Using the additional functionality provided by the MeSH hierarchy, we can modify the query above to rank order journals according to how often they have articles that have been assigned the MeSH term under a certain tree number, thus eliminating the sensitivity to different spellings of related concepts that was shown in the queries above. In MeSH, a child tree number shares its leftmost digits with its parent tree number, and differs in its three rightmost digits Therefore, the SQL “LIKE” operator can be used to find a MeSH term and its descendants, as shown in the query below. The MeSH tree number for “Leukemia” is “C04.557.337”.

SELECT mc.MEDLINE_ta, count(mc.pmid) as num_of_publications

FROM MEDLINE_citation mc

 join MEDLINE_mesh_heading msh on

 mc.pmid = msh.pmid

 join mesh_descriptor md on

 md.descriptor_name = msh.descriptor_name

 join mesh_desc_tree_number mdtn on

 md.descriptor_ui = mdtn.descriptor_ui

WHERE mdtn.tree_number like 'C04.557.337%'

GROUP BY mc.MEDLINE_ta

ORDER BY count(mc.pmid) desc

FETCH first 10 rows only;

The results of this query are:

Blood

7361

Leukemia

5168

Cancer Res

4595

Br J Haematol

4249

Leuk Res

3274

Cancer

2856

Rinsho Ketsueki

2789

Cancer Genet Cytogenet

2362

Leuk Lymph

2226

Bone Marrow Transplant

2183

The DB2 version of the system implementation makes use of the text index that is incorporated into the RDBMS system, using the operator “CONTAINS” which is not part of standard SQL. The following query asks how many papers in the last three years of MEDLINE have been published by authors with affiliations at Berkeley or Stanford.

SELECT
'Berkeley' as institution, count(pmid) as num_of_publications

FROM
MEDLINE_citation

WHERE
contains(article_affiliation,'"Berkeley"') = 1

AND

date_created > current date - 3 years

UNION

SELECT
'Stanford' as institution, count(pmid) as num_of_publications

FROM
 MEDLINE_citation

WHERE
contains(article_affiliation,'"Stanford"') = 1

AND

date_created > current date - 3 years;

This yields the following results:

Berkeley 2623

Stanford 4226

Although our system offers capabilities that the PubMed API does not, the PubMed search engine does offer search functionality that is not available in our system. In addition, PubMed provides a user interface that is more intuitive than SQL for an end user who is not a database expert. However, our system offers greater flexibility for innovative software developers who want to experiment with novel techniques for searching biomedical text, and to system developers who want to build systems of which MEDLINE is a component. End users will require user interfaces that permit them to search with ease, but direct access to the underlying database gives developers the opportunity to create user interfaces that are specifically designed to serve the needs of their particular users.

Conclusions

In this work, we developed highly customizable Java parsing code and relational database schemas that others may be interested in using or modifying. We developed software that uses the Java programming language and the SAX parser to parse XML-formatted MEDLINE files and load the data into a relational database. We loaded one copy into DB2 and another into Oracle, using Java MEDLINEParser. We also created a similar tool in Perl. The Perl code is less flexible and not as readily extensible as the object-oriented code of Java MEDLINEParser, but the functionality offered by the two database implementations is nearly the same.

Future work includes adding functionality to update the system to new versions of MEDLINE, and to accommodate MEDLINE update files. The Stanford group has begun to use MEDLINE to extract drug−gene relationships from the literature, and the Berkeley group has used the system, augmented with data from MeSH and LocusLink, to compete in the TREC 2003 genomics track competition [10]. As we continue to use these systems for research purposes, we are likely to identify alternative approaches that offer enhancements and improvements over the current design. We encourage others who work in similar areas to contribute to the open-source effort.

Availability and Requirements

Project name: Java MEDLINEParser

Project home pages: http://biotext.berkeley.edu/software/ and

 http://www.pharmgkb.org/

Operating system: Platform independent

Programming language: Java

Other requirements: Java 1.4.1 or higher, JAXP, relational database, and JDBC driver appropriate for the particular target database

License: None

Any restrictions on use by non-academics: None

Project name: Perl ParseMEDLINE

Project home pages: http://biotext.berkeley.edu/software and

 http://www.pharmgkb.org/

Operating system: Platform independent

Programming language: Perl

Other requirements: Perl 5.8 or higher to handle MEDLINE Unicode data (if writing directly to database), or earlier version of Perl (if writing to comma-separated-value files first, followed by use of database-loading tool such as Oracle SQL*Loader), Perl modules DBI and XML::Parser::PerlSAX, relational database, and Perl database driver appropriate for the particular database (e.g., DBD::Oracle)

License: None

Any restrictions on use by non-academics: None

Authors’ Contributions

DO, GB, and AS, developed the MEDLINE database schemas. GB and AS designed and implemented the Java MEDLINEParser. GB and AS ran MEDLINEParser to install MEDLINE in DB2 at Berkeley. DO ran MEDLINEParser to install MEDLINE in Oracle 9i at Stanford. DO developed Perl ParseMEDLINE and ran it to install the second version of MEDLINE at Stanford. DO and GB were primary authors of the article, and the remaining authors added their contributions to the manuscript. MH supervised the work at Berkeley; RB supervised the work at Stanford.

Acknowledgements

We thank Jane Rosov, John Butler, Tina Zhou, John Conroy, Madhura Sharangpani for useful discussions and assistance. Mark Musen and Teri Klein provided resources to support this work. Part of the research at Stanford was supported by NIH GM61374. The Berkeley portion of this research was supported by NSF DBI-0317510, an ARDA AQUAINT contract, and a gift from Genentech Corp.

References

http://www.ncbi.nlm.nih.gov/entrez/query/static/overview.html1.
PubMed Overview. []

2.
Entrez Programming Utilities [http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html]

3.
PubMed programming utilities user requirements [http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html#UserSystemRequirements]

4.
Leasing data from the National Library of Medicine [http://www.nlm.nih.gov/databases/leased.html]

5.
NLM MEDLINE DTD (Nov. 1, 2002) [http://www.nlm.nih.gov/databases/dtd/nlmMEDLINE_021101.dtd]

6.
MEDLINE Citation DTD (Nov. 1, 2002) [http://www.nlm.nih.gov/databases/dtd/nlmMEDLINEcitation_021101.dtd]

7.
NLMCommon DTD (Nov. 1, 2002) [http://www.nlm.nih.gov/databases/dtd/nlmcommon_021101.dtd]

8.
Events vs. Trees [http://www.saxproject.org/?selected=event]

9.
Medical Subject Headings - Files Available to Download [http://www.nlm.nih.gov/mesh/filelist.html]

10.
Bhalotia G NP, Nakov P, Schwartz AS, Hearst MA: BioText team report for the TREC 2003 Genomics Track. In: TREC Proceedings. 2003.

Figures

<!ENTITY % pub.date "((Year, ((Month, Day?) | Season)?) | MEDLINEDate)">

<!ELEMENT Year (#PCDATA)>

<!ELEMENT Month (#PCDATA)>

<!ELEMENT Day (#PCDATA)>

<!ELEMENT Season (#PCDATA)>

<!ELEMENT MEDLINEDate (#PCDATA)>

<!ELEMENT Journal (%ISSN.Ref;, JournalIssue, Coden?, Title?, ISOAbbreviation?)>

<!ELEMENT ISSN (#PCDATA)>

<!ELEMENT JournalIssue (Volume?, Issue?, %PubDate.Ref;)>

<!ELEMENT Volume (#PCDATA)>

<!ELEMENT Issue (#PCDATA)>

<!ELEMENT PubDate (%pub.date;)>

<!ELEMENT Coden (#PCDATA)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT ISOAbbreviation (#PCDATA)>

CREATE TABLE MEDLINE_journal (

 issn
VARCHAR(30)

NOT NULL,

 volume
VARCHAR(100),

 issue
VARCHAR(100),

 pub_date_year
VARCHAR(4),

 pub_date_month

VARCHAR(20),

 pub_date_day
VARCHAR(2),

 pub_date_season
VARCHAR(10),

 MEDLINE_date
VARCHAR(100),

 coden
VARCHAR(100),

 title VARCHAR(2000),

 iso_abbreviation
VARCHAR(50),

 CONSTRAINT pk_MEDLINE_journal

 PRIMARY KEY (issn)

);

Figure 1. Example of content representation in the DTD and its corresponding representation in the database schema. Elements and subelements are converted to table names and field names. The MEDLINE_journal table is one of the few tables that contains a primary key.

[image: image1.png]
Figure 2. Dependencies in the database schema. Parent tables contain primary keys that child tables reference as foreign keys. The main table MEDLINE_citation, is a child of MEDLINE_journal and MEDLINE_book, and a parent of eleven other tables.

[image: image2.png]
Figure 3. MEDLINE database development process. In Step 1, the user loads the schema, creating empty tables in the database. In Step 2, the conversion software parses the XML files and either loads the data directly into the database (2a), or writes the data out to intermediate text files (2b). If intermediate text files are generated, data from those files are loaded into the database as a separate step in Step 3.

Tables

Table 1. Metadata for MEDLINE_author table.

	columnNameDef
	xmlElementNameDef
	columnTypeDef

	 pmid

 last_name

 fore_name

 first_name

 middle_name

 initials

 suffix

 affiliation

 collective_name
	 PMID

 Author.LastName

 Author.ForeName

 Author.FirstName

 Author.MiddleName

 Author.Initials

 Author.Suffix

 Author.Affiliation

 Author.CollectiveName
	Types.INTEGER

Types.VARCHAR

Types.VARCHAR

Types.VARCHAR

Types.VARCHAR

Types.VARCHAR

Types.VARCHAR

Types.VARCHAR

Types.VARCHAR

Legend: columnNameDef: column names for the table, xmlElementNameDef: XML element names that correspond to column names, columnTypeDef: data type of each column

� The Perl version leaves out Book because there are no data in MEDLINE for Book. The Java version includes Book, but does not include DataBankList or AccessionNumberList. The Perl version includes DataBankList and AccessionNumberList.

