
Scaling Up BioNLP: Application of a
Text Annotation Architecture to Noun Compound Bracketing

Preslav Nakov, Ariel Schwartz, Brian Wolf
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720

{nakov,sariel}@cs.berkeley.edu

Marti Hearst
SIMS

University of California, Berkeley
Berkeley, CA 94720

hearst@sims.berkeley.edu

Abstract

We describe the use of the Layered Query
Language and architecture to acquire sta-
tistics for natural language processing ap-
plications. We illustrate system’s use on
the problem of noun compound bracket-
ing using MEDLINE.

1 Introduction

As our natural language processing (NLP) algo-
rithms become ever more successful, we need meth-
ods for conveniently re-using their results, both
for additional processing, and for end applications
such as text mining and information retrieval. We
have developed a query language called the Layered
Query Language (LQL) and a system architecture
that supports queries over layers of annotation on
natural language text. The model allows for both hi-
erarchical and overlapping layers and for querying at
multiple levels of description. The implementation
is built on top of a standard RDBMS, and, by using
carefully constructed indexes, can execute complex
queries efficiently.

We illustrate the use of LQL by applying it to an
important language analysis problem for bioscience
text: noun compound (NC) bracketing. Consider the
phrases liver cell antibody and liver cell line. Al-
though equivalent at the part of speech (POS) level,
they have different syntactic trees. In the former
case, an antibody targets a liver cell, while in the
latter we talk about a cell line which is derived from
the liver. The distinction can be represented as a bi-
nary tree or, equivalently, as a binary bracketing:

[[liver cell] antibody] (left bracketing)
[liver [cell line]] (right bracketing)

There is little prior work on NC bracketing. Best
known is that of Lauer (1995) who introduces the
probabilistic dependency1 model for the syntactic
disambiguation of NCs and argues against the ad-
jacency2 model, proposed in (Pustejovsky et al.,
1993). Lapata and Keller (2004) propose using
the Web as a baseline with an application to six
NLP tasks, including the syntactic disambiguation
of NCs, and show that variations on bigram counts
perform nearly as well as more elaborate methods.

We have extended the Lapata and Keller (2004)
work and have developed an algorithm for distin-
guishing between left and right bracketing by mak-
ing use of n-gram frequencies, paraphrases and sur-
face features (e.g., dashes and possessive makers)
whose counts are derived from Web search engines
(Nakov and Hearst, 2005). For example, if the NC
is amino acid sequence, we query on this term and
analyze the results brought back by the search en-
gine. These may include text in which a dash falls
between the first two words as in amino-acid. If this
happens sufficiently frequently, then the NC is likely
to have a left bracketing. Similarly, if we find brain’s
stem cells, this suggests a right bracketing for brain
stem cells, while brain stem’s cells would favor a
left one. A majority vote is used to combine the
various features and to determine left versus right
bracketing. Currently our approach yields accuracy

1The probabilistic dependency model compares Pr(w1|w3)
to Pr(w2|w3). Here Pr(wi|wj) means the probability that wi

precedes wj , for a given wj .
2The adjacency model compares Pr(w1|w2) to Pr(w2|w3).

of 89.34% (Nakov and Hearst, 2005) on Lauer’s data
set (baseline 66.80%).

However, the use of Web search engines imposes
limitations on what kinds of queries we can write,
mainly because of the lack of linguistic annotation.
For example, if we want to estimate the probability
that health precedes care #(′′health care′′)

#(care) , we need
the frequencies of “health care” and care, where
both words are nouns. The problem is that a query
for care will return many pages where it is used as
a verb, while in health care it would nearly always
occur as a noun. Even when both health and care
are used as nouns and are adjacent, they may be-
long to different NPs but sit next to each other only
by chance. Furthermore, since search engines ig-
nore punctuation characters, the two nouns may also
come from different sentences.

Other Web search engine restrictions prevent
querying directly for terms containing hyphens or
possessive markers such as amino-acid sequence
and protein synthesis’ inhibition. They also disal-
low querying for a term like bronchoalveolar lavage
(BAL) fluid, in which the internal parenthesized ab-
breviation suggests a left bracketing. Finally, search
engines cannot support queries that make use of gen-
eralized POS information such as

stem cells VERB PREP brain

in which the uppercase patterns stand for any verb
and any preposition.

Further, using page hits as a proxy for n-gram fre-
quencies can produce some counter-intuitive results.
Consider the bigrams w1w4, w2w4 and w3w4 and
a page that contains each bigram exactly once. A
search engine will contribute a page count of 1 for
w4 instead of a frequency of 3; thus the page hits
for w4 can be smaller than the page hits for the sum
of the individual bigrams. See Keller and Lapata
(2003) for more potential problems with page hits.

In the remainder of this paper we describe the use
of our Layered Query Language and architecture to
acquire statistics for language phenomena that make
use of NLP results. These examples include using
POS and shallow-parse annotation layers. The sys-
tem also supports queries on other kinds of anno-
tation layers not shown here, such as gene/protein
names, MeSH labels, and abbreviation expansions.

2 LQL and Noun Compound Bracketing

Below we illustrate LQL via some example queries
supporting the NC bracketing experiments. A
full description of the language syntax and a
broader example-based introduction can be found at
http://biotext.berkeley.edu/lql/ .

2.1 Selecting a Data Set
Query (1) below creates a set of NCs to work with:
FROM

[layer=’shallow_parse’ && tag_type=’NP’
ˆ [layer=’pos’ && tag_type="noun"]

[layer=’pos’ && tag_type="noun"]
[layer=’pos’ && tag_type="noun"] $

] AS compound
SELECT compound.content

This LQL query looks for a noun phrase (NP) from
the shallow-parse layer, containing exactly three
nouns from the POS layer. Each layer in an LQL
query is enclosed in brackets and is optionally fol-
lowed by a binding statement. Layers have names,
e.g., pos and shallow_parse, which determine a
possible set of types such as NP for shallow_parse
and NN for pos. There are macros for groups of tags,
such as noun, which refers to all parts of speech
which are nouns in the Penn Treebank. Single
quotes are used for exact matches, and double quotes
for case insensitive matches and macros.

Enclosure of one layer within another indicates
that the outer spans the inner. By default, lay-
ers’ contents are adjacent; the keywords ALLOW GAPS

change this default. We use the UNIX delimiters ˆ
and $ to constrain the results so that no other words
can preceed or follow the three nouns within the NP.
Finally, the select statement specifies that the con-
tents of the compound are to be returned.

Query (1) is case sensitive. While this is useful in
the biomedical domain, where the capitalization can
distinguish between different genes or proteins, to
get frequency counts we want normalization. Query
(2) below converts the results to lowercase by using
the corresponding SQL function:
SELECT LOWER(compound.content) lc, COUNT(*) AS freq
FROM

BEGIN_LQL
FROM

[layer=’shallow_parse’ && tag_type=’NP’
ˆ [layer=’pos’ && tag_type="noun"]

[layer=’pos’ && tag_type="noun"]
[layer=’pos’ && tag_type="noun"] $

] AS compound
SELECT compound.content

END_LQL
GROUP BY lc
ORDER BY freq DESC

It also encloses the LQL inside an SQL block and
then uses SQL aggregation functions to produce a
sorted list (in descending order) of the NCs and their
corresponding frequencies. This query will extract
3-noun NCs, provided that the POS tagging and the
shallow-parsing annotations are correct. However,
because it requires that the NP consists of exactly
3 nouns (without preceding adjectives, determiners
etc.), it will omit some 3-noun NCs that are preceded
by modifiers and determiners (such as the, a, this).

Query (3) below asserts that the nouns should oc-
cupy the three last positions in the NP and disallows
other nouns within the same NP, but allows other
POS. Note the tradeoff between query complexity
and amount of control afforded by the language.
SELECT LOWER(compound.content) lc,

COUNT(*) AS freq
FROM

BEGIN_LQL
FROM

[layer=’shallow_parse’ && tag_type=’NP’
ˆ ({ ALLOW GAPS }

![layer=’pos’ && tag_type="noun"]
([layer=’pos’ && tag_type="noun"] AS n1
[layer=’pos’ && tag_type="noun"] AS n2
[layer=’pos’ && tag_type="noun"] AS n3) $

) $
]

SELECT n1.content, n2.content, n3.content
END_LQL

GROUP BY lc
ORDER BY freq DESC

The new query contains an assertion that a layer
does not exist, via the negation operator (“!”). We
need the outer brackets to indicate that gaps (inter-
mediate words) are allowed between any layers, thus
disallowing the non-existing layer anywhere before
the sequence of three nouns (not just when it imme-
diately precedes the first noun). One more pair of
brackets counteracts ALLOW GAPS and keeps the three
internal nouns adjacent to one another.

2.2 Extracting Features

2.2.1 n-grams
Query (4) below obtains frequencies for bigrams

such as immunodeficiency virus. It allows for in-
flections of the second word, respecting the sentence
boundaries. It also requires both words to be nouns
and to be inside the same NP, thus filtering any false
bigrams in which the nouns are adjacent by chance.
Note that we did not need to select both words, just
one of them, as we are only interested in the to-
tal count. Also note the double quotes around the
words, which ensure a case insensitive matching.

SELECT COUNT(*) AS freq FROM
BEGIN_LQL

FROM
[layer=’shallow_parse’ && tag_type=’NP’

[layer=’pos’ && tag_type="noun"
&& content="immunodeficiency"] AS word1

[layer=’pos’ && tag_type="noun"
&& (content="virus" || content="viruses")]]

SELECT word1.content
END_LQL

Unigram counts are calculated in a similar way.

2.2.2 Paraphrases
Paraphrases are an important feature type for de-

termining NC bracketing. For example, an author
describing the concept of human immunodeficiency
virus may choose to write it in a more expanded
manner, such as immunodeficiency virus in humans.
If this prepositional paraphrase occurs often, it
suggests that the full NC has a right bracketing,
since immunodeficiency and virus are kept together
in the expanded version.

There are NCs whose meaning cannot be ex-
pressed with a paraphrase at all, or at least not with a
prepositional one (Warren, 1978). In the latter case,
one could try a copula paraphrase like immunodefi-
ciency virus that/which is human (right bracketing),
or a verb paraphrase such as virus causing human
immunodeficiency (left) or immunodeficiency virus
found in humans (right).

Instead of trying to manually decide the correct
paraphrases, we can issue queries on the appropri-
ate paraphrase patterns and find out how often each
occurs in the corpus. We then add up the number
of hits predicting a left versus a right bracketing and
compare the counts to make a decision.

Consider the first right-predicting prepositional
paraphrase above. It starts with the second word,
followed by the third word, followed by a prepo-
sition, then by an optional article, and finally by
the first word. In Query (5) below, we require the
words to have the correct POS and we allow inflec-
tions for every word except immunodeficiency be-
cause it modifies virus. We allow any preposition
(tag type=’IN’) and we count the examples for each
one. A question mark is used to express the option-
ality of the layer corresponding to the determiner.3

Verbal and copula paraphrases are handled similarly.

3This could also be expressed by writing two separate LQL
queries: one with and one without the optional layer, which are
then connect by the SQL UNION operator.

SELECT LOWER(prep.content) lp, COUNT(*) AS freq FROM
BEGIN_LQL
FROM

[layer=’sentence’
[layer=’pos’ && tag_type="noun" &&
content = "immunodeficiency"]

[layer=’pos’ && tag_type="noun" &&
content IN ("virus","viruses")]

[layer=’pos’ && tag_type=’IN’] AS prep
?[layer=’pos’ && tag_type=’DT’ &&

content IN ("the","a","an")]
[layer=’pos’ && tag_type="noun" &&
content IN ("human", "humans")]]

SELECT prep.content
END_LQL

GROUP BY lp ORDER BY freq DESC

3 Evaluation

We experimented on a collection of 1.4 million
MEDLINE abstracts, including 10 million sentences
(320 million annotations). We translated Query (2)
into SQL using our automatic translator, obtaining
418,678 NCs. We manually investigated the most
frequent ones, removing those with errors in tok-
enization (e.g., transplan or tation), and in POS
or shallow-parsing (e.g., situ hybridization, without
in). Two annotators judged the remaining examples
as left, right or both (agreement: 88%, kappa .606).
We retained the top 232 examples that were unam-
biguously annotated as either left (193) or right (39),
yielding a baseline of 83.19%. We then collected n-
gram counts and paraphrases using Queries (4) and
(5), plugging the word forms in automatically (us-
ing the UMLS Specialist 4 lexicon to produce vari-
ants). The results are shown in Table 1. In addition
to probabilities (Pr), we also tried counts (#) and χ2,
but the prepositional paraphrases were much more
accurate: 93.30% (with 83.62% coverage). By com-
bining paraphrases with the χ2 models in a majority
vote, and by assigning the undecided cases to right-
bracketing, we achieved 92.24% accuracy.

4 Discussion

Use of LQL is not limited to NC bracketing and can
be used for other tasks such as automatic paraphrase
acquisition. For example, the most frequent verbal
paraphrases for the NC bone marrow cells are cells
derived from bone marrow (22 instances) and cells
isolated from bone marrow (14 instances). The most
frequent prepositional rephrases are cells in bone
marrow (456 instances) and cells from bone marrow

4http://www.nlm.nih.gov/pubs/factsheets/umlslex.html

Model
√ × ∅ P(%) C(%)

adjacency 196 36 0 84.48 100.00
Pr adjacency 173 59 0 74.57 100.00
χ2 adjacency 200 32 0 86.21 100.00
dependency 195 37 0 84.05 100.00
Pr dependency 193 39 0 83.19 100.00
χ2 dependency 196 36 0 84.48 100.00
PrepPar 181 13 38 93.30 83.62
PP+χ2adj+χ2dep 207 13 12 94.09 94.83
PP+χ2adj+χ2dep→right 214 18 0 92.24 100.00
Baseline (choose left) 193 39 0 83.19 100.00

Table 1: Bracketing results. Shown are the num-
bers for correct (

√
), incorrect (×), and no prediction

(∅), followed by precision (P, calculated over
√

and
× only) and coverage (C, % examples with predic-
tion). “→ right” means assigning right in case of ∅,
and “+” means a majority vote combination.

(108 instances). All express the correct meaning us-
ing different paraphrases.

Other linguistic annotations may be potentially
useful: we can construct a set of “hard” examples for
NC bracketing by writing an LQL query that looks
for 3-noun NCs w1w2w3 such that both w1w2 and
w2w3 are MeSH terms, e.g., stem cell line.

Acknowledgements We thank Janice Hamer for
helping us with the annotations and examples. This
research was supported by NSF DBI-0317510, and
a gift from Genentech.

References
Frank Keller and Mirella Lapata. 2003. Using the Web to

obtain frequencies for unseen bigrams. Computational Lin-
guistics, 29:459–484.

Mirella Lapata and Frank Keller. 2004. The Web as a base-
line: Evaluating the performance of unsupervised Web-
based models for a range of NLP tasks. In Proceedings of
HTL-NAACL, pages 121–128, Boston.

Mark Lauer. 1995. Designing Statistical Language Learners:
Experiments on Noun Compounds. Ph.D. thesis, Department
of Computing Macquarie University NSW 2109 Australia.

Preslav Nakov and Marti Hearst. 2005. Search engine lin-
guistics beyond the n-gram: Application to noun compound
bracketing. In Proceedings of the 9th coNLL.

James Pustejovsky, Peter Anick, and Sabine Bergler. 1993.
Lexical semantic techniques for corpus analysis. Compu-
tational Linguistics, 19(2):331–358.

Beatrice Warren. 1978. Semantic patterns of noun-noun com-
pounds. In Gothenburg Studies in English 41, Goteburg,
Acta Universtatis Gothoburgensis.

