
BioText Team Experiments for the

TREC 2004 Genomics Track

PI Nakov†, AS Schwartz†, E Stoica§, MA Hearst§
†Computer Science Division

§School of Information Management and Systems
University of California Berkeley

Berkeley, CA 94720
{nakov, sariel}@cs.berkeley.edu, {estoica,hearst}@sims.berkeley.edu

Abstract

The BioText group participated in the two main tasks
of the TREC 2004 Genomics track. Our approach to
the ad hoc task was similar to the one used in the 2003
Genomics track, but due to the lack of training data,
we did not achieve the high scores of the previous
year. The most novel aspect of our submission for
the categorization task centers around our method
for assigning Gene Ontology (GO) codes to articles
marked for curation. This approach compares the
text surrounding a target gene to text that has been
found to be associated with GO codes assigned to
homologous genes for organisms with genomes similar
to mice (namely, humans and rats). We applied the
same method to GO codes that have been assigned to
MGI entries in years prior to the test set. In addition,
we filtered out proposed GO codes based on their
previously observed likelihood to co-occur with one
another.

1 Introduction

The TREC 2004 Genomics Track consisted of an ad
hoc retrieval task and a categorization task, which in
turn had two sub-tasks, triage and annotation. This
year, the Berkeley BioText group participated in all
three tasks.

The ad hoc task was a traditional search task. The
collection consisted of a ten year subset of MED-
LINE (about 4.5 million documents) and 50 topics
derived from information needs obtained via inter-
viewing biomedical researchers. There was no train-
ing data, other than five sample topics and relevance
judgments.

The goal of the categorization task was to mimic ac-
tivities performed by curators in the Mouse Genome
Informatics (MGI) project [8]. Human curators at
MGI annotate genes and proteins with Gene Ontol-
ogy (GO) codes based on evidence found in docu-
ments. The Gene Ontology [11] is a controlled vocab-
ulary of terms (GO codes) describing gene product
attributes. It is organized into three disjoint hierar-
chies: molecular functions (MF), biological processes
(BP) and cellular components (CC). Examples of GO
codes are: GO:0030246 (carbohydrate binding, a MF),
GO:0007067 (mitosis, a BP) and GO:0005634 (nu-
cleus, a CC).

In MGI, a gene is annotated with a GO code only
if there is a document that contains evidence to sup-
port the annotation. The Gene Ontology defines nine
evidence codes. Examples of evidence codes include:
inferred from mutant phenotype (IMP), inferred from
direct assay (IDA) and inferred by curator (IC).

Manual GO code assignment is a three step process.
In the first step, all documents that talk about the
mouse and its biology are identified. In the second
step, a decision is made about which of the documents
identified in step one have experimental evidence war-
ranting GO code annotation. Articles that pass the
second step are then manually entered into the MGI
system with a tag for GO code, mapping, expression,
etc. and with a target gene(s) assigned. In the third
step, curators assign GO and evidence codes to the
target gene(s) in each document.

The triage task corresponds to step two above, iden-
tifying which papers contain experimental evidence,
while the annotation task corresponds to part of step
three, annotating document-gene pairs with GO hi-
erarchy codes (i.e. MF, BP and CC, not the codes
themselves) and optionally with evidence codes.

1



The data for the categorization task consisted of doc-
uments from three journals: the Journal of Biological
Chemistry (JBC), the Journal of Cell Biology (JCB),
and the Proceedings of the National Academy of Sci-
ence (PNAS), for a total of 11,880 documents. The
articles from 2002 were used for training and those
from 2003 for testing.

Below we describe our approach for each task, begin-
ning with the annotation task, which was the most
novel of our approaches.

2 The Annotation Task

The requirement for the annotation task was to assign
GO hierarchy codes (MF, BP and CC) to document-
gene pairs. Optionally, we could assign the evi-
dence codes for the annotation. There were 1,418
document-gene pairs in the training set and 877 pairs
in the testing set. The evaluation used the F -measure
defined as

F =
2×P×R

P + R
, (1)

where P is the precision and R is the recall.

The novelty of our approach centers around our meth-
ods for restricting and filtering the candidate GO
codes. We use information about species whose
genomes are similar to the mouse genome, and about
which kinds of GO codes can logically co-occur, us-
ing a measure based on the κ coefficient [10]. This
produces high recall but low precision. To improve
the latter, we use an SVM classifier that was applied
to three of the five submitted runs.

2.1 General Procedure

In this section we present our general procedure for
extracting GO codes. In a nutshell, we pre-processed
the documents and the GO codes, identified the tar-
get genes in text and extracted the GO codes within
a fixed size window around the target genes.

2.1.1 Gene Identification

Several gene tagging tools were made available to the
participants, including YAGI [6], LingPipe [3] and
AbGene [1]. While they identify most of the genes
mentioned in the text, they do not tell us which of

these refer to the target gene. For this reason we used
our own gene identification tool, developed for last
year’s Genomics Track [7]. Our module assigns Lo-
cusLink ID(s), thus making straightforward the iden-
tification of the target gene.

However, the LocusLink gene names and synonyms
had insufficient coverage, so we augmented them with
gene names extracted from the MGI database, linking
them to the corresponding LocusLink IDs.

2.1.2 GO Codes Identification

We built a table consisting of the text correspond-
ing to the definition of each GO code. For each GO
code’s text, we eliminated stop words and punctua-
tion characters and divided the text into tokens using
space as a delimiter.

When processing the full text of a journal article, our
system first identified locations of target genes, and
then searched for GO codes within a window centered
around the target gene. In each window, we assigned
a GO code to a gene if we found a proportion of
GO term tokens larger than a threshold (0.8 in our
experiments).

Having found an occurrence of a GO code, we as-
signed to the document-gene pair the GO hierarchy
code corresponding to that GO code. For example, if
we found in the text the GO code protein binding, we
assigned MF to the document-gene pair since protein
binding is a molecular function.

2.2 Searching for Only a Subset of the
GO codes

The GO ontology currently contains about 16,700 GO
codes. Presumably, searching in text for all possible
GO codes will result in a large number of false posi-
tives. Thus we decided to limit the set of GO codes
that would be considered possible candidates.

For each gene we aimed to search for only the GO
codes we expect to find in text for that gene. Given
that mice, humans and rats are species with simi-
lar genomes, our assumption was that there should
be an overlap between the GO codes a mouse gene
is annotated with and the GO codes its homologous
genes (human and rat genes with the same name as
the mouse gene) annotations.

To find the expected GO codes for a gene, we used
the GO annotation database (GOA [9]) from the Eu-

2



ropean Bioinformatics Institute (EBI) [2]. GOA con-
tains annotations of human and rat gene products
with GO codes. Thus, for a mouse gene we search in
text only for the GO codes its homologous genes are
annotated with in GOA. For example, for mouse gene
desmin, we search for only the GO codes that human
and rat genes with name desmin are annotated with
in GOA.

For the training set we found annotations for 60% of
the genes, for a total of 1,553 GO codes. Since we
were missing annotations for about half of the genes,
we decided to use this set of 1,553 GO codes as a pool
from which to draw labels for the entire collection.
We refer to this as the GOA subset.

In addition to the subset of GO codes annotated to
homologous genes, we experimented with a subset of
MGI codes. More precisely, since the training collec-
tion consisted of articles from 2002, our subset con-
tained the GO codes annotated to genes in MGI be-
fore 2002. This subset had 1,791 GO codes.

2.3 Filtering GO Codes using κ Coef-
ficient

Due to the nature of biomedical text, it is possible to
find GO codes in text that are illogical. For example,
if a gene is involved in RNA transcription, this cannot
happen outside the cell, so if we find in the text both
strings RNA transcription and extracellular, one has
to be eliminated. To eliminate such illogical group-
ings, we used again the GOA human database.

For each pair of GO codes annotated to a gene (GO1

and GO2) we compute the κ coefficient [10, 13] as
follows.

Consider the following variables

a: the number of times the gene is annotated with
both codes;

b: the number of times the gene is annotated with
GO1 but not with GO2;

c: the number of times the gene is annotated with
GO2 but not with GO1; and

d: the number of times the gene is not annotated
with GO1 or GO2.

The actual and the expected probabilities that GO1

and GO2 are annotated to the same gene are:

Af =
a + d

a + b + c + d
(2)

Ef = P1 ∗ P2 + (1− P1) ∗ (1− P2) (3)

where P1 = (a + b)/(a + b + c + d), P2 = (a + c)/(a +
b + c + d).

Then

κ(GO1, GO2) =
Af − Ef

1− Ef
(4)

We compute the κ coefficient between every pair of
GO codes annotated to a gene in the GOA human
database. The κ coefficient takes values between −1
and 1. GO codes that are both frequently annotated
to a gene have positive κ coefficients. GO codes that
are not annotated together to genes have 0 or negative
κ coefficients.

We use the κ coefficients to eliminate illogical GO
codes as follows. In particular, we eliminate a GO
code that does not have positive κ coefficients with
more than 75% of the rest of GO codes found in the
text for that gene.

2.4 Filtering GO Codes with an SVM
Classifier

Experimental results showed that our technique for
identifying GO hierarchy codes achieves high recall,
but low precision. For example, on training data us-
ing the MGI subset (which in this case contains GO
codes annotated before 2002) and a window of 10, we
obtained a recall of 0.75, but a precision of only 0.24.

To improve precision, we filter the GO codes using
an SVM classifier provided as part of the open source
machine learning package WEKA (Waikato Environ-
ment for Knowledge Analysis [5, 14]) from the Uni-
versity of Waikato, New Zealand.

There are three GO hierarchy codes MF, BP and CC,
so we can train three separate binary classifiers, one
for each hierarchy code. Since we obtain a sufficiently
high recall by just extracting GO codes from text, we
only resort to the classifier when the GO hierarchy
code the classifier is responsible for has been assigned
in the previous step. Otherwise, the hierarchy code
is not assigned.

We experimented with the following features.

• GO codes extracted from text: (e.g. mitosis);

3



Run Classifier F Precision Recall
biotext21 N 0.4041 0.2708 0.7960
biotext22 N 0.4008 0.2658 0.8141
biotext23 Y 0.3299 0.4437 0.2626
biotext24 Y 0.3367 0.4452 0.2707
biotext25 Y 0.3149 0.4181 0.2525

Table 1: Annotation Task Submission Results.

• GO hierarchy codes corresponding to the GO
codes extracted from text: (e.g. BP);

• document section: e.g. title, introduction, re-
sults, figure etc.;

• number of previous assignments in MGI (before
2003) of a particular GO code to the target gene;

• number of previous assignments in MGI (before
2003) of a particular GO code to a gene from the
same family as the target gene;

• number of previous assignments in LocusLink
(before 2003) of a particular GO code to a hu-
man homolog of the target gene;

• number of previous assignments in LocusLink
(before 2003) of a particular GO code to a hu-
man homolog of a gene from the family of the
target gene;

• MeSH tree codes, cut at level 3 (e.g.
F02.463.425);

• evidence codes keywords from a manually con-
structed list.

Most of the features were extracted from a window
around the target gene (feature-dependent size).

We extracted the document sections from the SGML
files (we do not allow our windows to cross the section
boundaries). The reason to include the document sec-
tions as features is based on the observation that GO
codes annotated to genes seem to be found primarily
in titles, figure captions, and some particular sections
(e.g. results and discussions).

The idea to look at the previous assignments to
gene/family comes from the observation that the
more often a particular GO code has been assigned in
the past, the higher the likelihood that it will be as-
signed again. Similarly, homologous genes in mouse
and human are likely to share the same functions,
processes and components, i.e. to be assigned the
same GO hierarchy codes. MeSH terms are generally
among the best features for text classification tasks

in the biomedical domain and proved to be useful in
this case too. A description of our MeSH term iden-
tification module can be found in [7].

Finally, for each evidence code, we manually con-
structed a list of relevant keywords. These were
derived from the evidence codes definition found at
the GO Web site1 and have been further augmented
with related terms by a person with biomedical back-
ground. We also tried words/stems but these did not
help and were not used in the final submission.

While gene families are already available online from
MGI2, they had limited coverage and were further
restricted to mouse only. Instead, we extracted fam-
ily information from LocusLink by searching for gene
names and synonyms containing one of the strings:
family, superfamily/super-family and subfamily/sub-
family. For example, the gene olfactory receptor, fam-
ily 5, subfamily V, member 1 is a member of subfamily
V of the olfactory receptor family. The naming regu-
larities in LocusLink allowed us to design a simple set
of rules and to extract 13,456 different genes grouped
into 3,575 families/subfamilies/superfamilies.

2.5 Results

We submitted five runs for the annotation task (see
Table 1). To each document-gene pair we assigned
GO hierarchy codes only. Three runs used an SVM
classifier. The two runs without a classifier, biotext21
and biotext22, obtained F = 0.4041 (P = 0.2708, R
= 0.7960) and respectively F = 0.4008 (P = 0.2658,
R = 0.8141). The first run was obtained with the
MGI subset and a window of 10 (2,700 GO codes).
The second run was obtained with the GOA subset
(1,004 GO codes) and a window of 20.

Tables 2 and 3 show the F-measure obtained without
a classifier, on training and respectively testing data
for window sizes of 10 and 20. MGI and GOA de-
note the two subsets we experimented with (the MGI

1http://www.geneontology.org/GO.evidence.html
2http://www.informatics.jax.org/mgihome/nomen/

genefamilies/index.shtml

4



Subset of GO codes Win = 10 Win =20
MGI 0.3725 (0.06) 0.3704 (0.05)
MGI + κ 0.3507 (0.06) 0.3726 (0.06)
MGI + MeSH 0.3863 (0.07) 0.3981 (0.07)
MGI + κ + MeSH 0.3851 (0.08) 0.4008 (0.07)
GOA 0.3967 (0.06) 0.3903 (0.05)
GOA + κ 0.3988 (0.06) 0.3904 (0.06)
GOA + MeSH 0.3791 (0.07) 0.4006 (0.07)
GOA + κ + MeSH 0.3769 (0.08) 0.4006 (0.08)
All GO 0.3803 (0.04) 0.3733 (0.03)
All GO + κ 0.3810 (0.05) 0.3730 (0.04)
All GO + MeSH 0.3990 (0.05) 0.3883 (0.06)
All GO + κ + MeSH 0.3970 (0.05) 0.3883 (0.06)

Table 2: F-measure on training data for assigning GO hierarchies. Numbers in parentheses show F-measures
for computing exact GO codes (not part of the TREC task).

Subset of GO codes Win = 10 Win =20
MGI 0.4041 (0.06) 0.4019 (0.04)
MGI + κ 0.4067 (0.06) 0.4065 (0.05)
MGI + MeSH 0.4626 (0.08) 0.4674 (0.07)
MGI + κ + MeSH 0.4666 (0.08) 0.4694 (0.07)
GOA 0.3989 (0.06) 0.4021 (0.04)
GOA + κ 0.3991 (0.06) 0.4008 (0.05)
GOA + MeSH 0.4450 (0.08) 0.4644 (0.07)
GOA + κ + MeSH 0.4431 (0.08) 0.4608 (0.07)
All GO 0.3002 (0.02) 0.3923 (0.03)
All GO + κ 0.2996 (0.02) 0.3946 (0.04)
All GO + MeSH 0.1793 (0.02) 0.4628 (0.05)
All GO + κ + MeSH 0.1719 (0.02) 0.4634 (0.06)

Table 3: F-measure on testing data for assigning GO hierarchies. Numbers in parentheses show F-measures
for computing exact GO codes (not part of the TREC task).

5



GO codes annotated before 2003 and respectively the
GO codes annotated to homologous genes in GOA
database), while All GO denotes the set of all GO
codes. In parenthesis, we show the F-measure com-
puted with the exact GO codes, assuming the target
goal was to assign the correct GO code for a gene,
not just the MF, CC or BP code.

Several points are worth noting. First, we see a dra-
matic difference between the F-measure computed in
terms of MF, CC, BP and the F-measure computed
in terms of exact GO codes. This shows that while
our system can assign a correct hierarchy code, it is
generally not able to assign the correct GO code. Sec-
ond, using a reduced set of codes yields a marginally
better performance. Third, from the point of view of
running time, it is also about twenty times faster to
search for a reduced set of codes than to search for
all the codes.

The performance on testing data was better than the
performance on training data. A possible explanation
for this could be the fact that the testing set was
smaller (877 document-gene pairs compared to 1423
document-gene pairs in the training set). Filtering
with κ generally helps though not significantly. Also,
the results obtained with the MGI subset and with
the GOA subset are comparable.

A data analysis performed after the TREC submis-
sion showed that we can improve the F-measure us-
ing the MeSH terms. Particularly, after finding a GO
code in text, we eliminate it if we cannot find 50% of
its tokens in the MeSH terms annotated to the docu-
ment. Our assumption here is that the gene function
has to be a major topic in the document. MeSH
terms represent the major topics in the document,
hence we eliminate the GO codes not found in the
MeSH terms. Using the MeSH terms we improve our
performance on the testing collection from 0.4041 to
0.4694 (obtained with the MGI subset and a window
of 20).

We submitted three runs with the SVM classifier (see
Table 1). Biotext23 and biotext25 used the GOA
subset, while biotext24 used all.

For biotext23 and biotext24 we searched for features
in a window of 200 words centered around the gene,
while for biotext25 we searched in a window of 100
words. While we gain in precision (for example bio-
text24 achieves a precision of 0.4452 compared to bio-
text21 which obtains a precision of 0.2708), we lose
a lot on recall and these runs are worse compared to
the ones without the classifier. The best F obtained
with a classifier is only 0.3367, whereas the best F

obtained without the classifier is 0.4041.

3 The Ad Hoc Retrieval Task

For the ad hoc retrieval task we used a database-
centered approach similar to what we submitted last
year for TREC [7]. We experimented with sev-
eral techniques for gene recognition and different
MeSH [4] sub-hierarchies.

In MeSH, each concept is assigned a unique iden-
tifier and one or more alphanumeric tree numbers
(corresponding to particular positions in the hierar-
chy). For example, A (Anatomy), A01 Body Regions,
A01.456 Head. In addition, each MeSH concept is
assigned a semantic type, e.g., Enzyme, Mammal,
Chemicals. For the ad hoc task we used the MeSH
terms annotated to documents and the MeSH chem-
icals sematic type.

We processed the queries and extracted a variety of
features including:

• GENE LOCUS: genes found by approximate match-
ing to the LocusLink genes and synonyms;

• GENE YAGI: genes found using Yagi [6];

• GENE: words looking like a
gene/protein/chemical name found in the
text (e.g. SLC40A1);

• FAMILY: family name inferred from the query
text (using a pattern matching);

• FAMILY LOCUS: family names for the genes (auto-
matically generated by processing the synonym
names in LocusLink, as described above);

• MeSH: MeSH terms;

• ORGANISM MeSH: the organism name (inferred
from MeSH).

For every type of feature we generated a complex
sub-query, as follows3. Let G be the various forms
of the feature and let LG be other lower-confidence
rules for normalizing the feature names that have a
higher rate of false positives (implemented only for
LocusLink genes). The score of a document R given
feature type f is computed as follows:

3See [7] for a more detailed description of our database sys-
tem.

6



Score(R, f) = the aggregated SUM over the result of
the UNION operator GROUP BY document identi-
fier of:

(a) J * (G compared to terms in titles)
(b) J * (LG compared to terms in abstracts)
(c) K * (LG compared to terms in titles)
(d) K * (LG compared to terms in abstracts)
(e) L * (MeSH concepts compared to MeSH
terms assigned to documents)

where J = 1,K = 0.015, and L = 1.4 (determined ex-
perimentally). The final score of a document, is cal-
culated as

∑
f Score(R, f) ∗ tf(f) ∗weight(f), where

tf(f) is the term frequency of the feature in the topic,
and weight(f) is the weight assigned to feature type
f .

Because of the lack of training topics with reliable
reference judgement, we could not fine tune the fea-
ture type weights. The following weights were used
in our official run:

GENE LOCUS = 1
GENE = 0.6
GENE YAGI = 0.8
MeSH = 2
ORGANISM MeSH = 4
FAMILY = 3
FAMILY LOCUS = 3

3.1 Results

We submitted one official run for the ad-hoc task.
The mean average precision (MAP) over the 50 top-
ics was 0.1384, which is quite low. We did not pro-
duce additional unofficial runs, but we believe that
the system suffered from the lack of proper training
data for tuning the different weights. Fine-tuning the
weights on the training data was one of the main rea-
sons our system achieved high performance last year.
Another limitation of the system was that we did not
have a sub-query for terms that were not mapped to
gene-names or MeSH terms.

4 The Triage Task

For the triage task we analyzed the PubMed cita-
tions only; we did not use the full text, although we
think doing so could have improved the results. We
trained an SVM classifier using SVM-light [12] with
the following features:

• the words from the title, weighted by tf.idf for
the entire collection, and normalized so that the
weight vector sums to one (for use by the SVM
classifier);

• the MeSH labels assigned to the citation, cut off
at tree level 3;

• a nominal feature indicating if the article had
been assigned a genre other than “Journal Ar-
ticle” (such as “Survey”), which can sometimes
indicate negative evidence for curation;

• the DataBankName feature assigned to some
PubMed entries, since those articles that have
been assigned this feature often discuss a topic
relevant to genomics and often indicate a posi-
tive curation decision.

In order to optimize the Normalized Utility (NU)
measure used to assess the triage task, and because
there were many more negative instances than posi-
tive, it was necessary to include documents with neg-
ative SVM scores in the result set. Experimentation
on the training set indicated that this cutoff should
be set to -0.9. However, when applied to the test set,
the number of documents retrieved at this threshold
seemed too large, so we decided to submit at larger
cutoff scores of -0.7, -0.6, -0.5, -0.4, and -0.3. After
receiving the test labels it was evident that we should
have used the -0.9 cutoff determined experimentally,
as that would have brought our NU score to 0.344,
which is close to the track average. Our best official
NU score was 0.32 using a cutoff of -0.7.

5 Conclusions

For the annotation task we experimented with re-
duced sets of GO codes and filtered the GO codes
using the κ coefficient. To improve precision we fur-
ther filtered the GO codes using an SVM classifier.
We obtained a marginally better performance with
the reduced sets of GO codes versus the performance
obtained with all the GO codes. Also, searching in
text for only a subset of GO codes is about 20 times
faster. Using the κ coefficient to eliminate codes that
should not co-occur seems to improve performance
slightly.

Unfortunately, while clearly helpful on the training
data, the SVM classifier achieved a lower perfor-
mance on the testing data. A possible explanation
for this performance could be that the testing docu-
ments contained mostly new genes for which little is

7



known. For a lot of them we did not have any syn-
onyms available, i.e. we found far less instances of
the target gene in text, which means far less features
available to the classifier. In addition, some of our
most important features were eliminated altogether:
if the gene is new then we do not have previous assign-
ments to it, there are no known homologous genes and
we do not know its family. All these make the test-
ing data look different from the training, which can
be disastrous for a maximum margin classifier like
SVM. Moreover, fewer windows means fewer possi-
ble GO categories proposed and thus less utility from
filtering them.

6 Acknowledgements

We would like to thank Janice Hamer for her help
in generating keywords corresponding to evidence
codes. This research was supported by NSF grant
DBI-0317510 and a gift from Genentech.

References

[1] Abgene. ftp.ncbi.nlm.nih.gov/pub/tanabe/
AbGene/.

[2] European bioinformatics institute (ebi).
http://www.ebi.ac.uk/.

[3] Lingpipe. http://alias-i.com/lingpipe/.

[4] Medical subject heading (mesh).
http://www.nlm.nih.gov/mesh/.

[5] Waikato environment for knowledge engineering.
http://www.cs.waikato.ac.nz/ml/weka/.

[6] (yagi) yet another gene identifier.
http://www.cs.wisc.edu/ bsettles/yagi/.

[7] Bhalotia, G., Nakov, P., Schwartz, A., and
Hearst, M. Biotext team report for the trec 2003
genomic track. In Proceedings of the 12th Text
REtrieval Conference (2003), pp. 612–621.

[8] Blake, J., Richardson, J., Bult, C., Kadin,
J., Eppig, J., and the members of the Mouse
Genome Database Group. Mgd: The mouse
genome database. In Nucleic Acids Res (2003),
vol. 31, pp. 193–195.

[9] Camron, E., Barrell, D., Lee, V., Dimmer, E.,
and Apweiler, R. The gene ontology annotation

(goa) database - an integrated resource of go an-
notations to the uniprot knowledgebase. In Silico
Biology (2004), vol. 4(1), pp. 5–6.

[10] Cohen, J. A coefficient for agreement for nominal
scales, 1960.

[11] Consortium, T. G. O. Gene ontology: tool for
the unification of biology. In Nature Genet.
(2000), vol. 25, pp. 25–29.

[12] Joachims, T. Learning to Classify Text Using
Support Vector Machines. Kluwer, 2002.

[13] Kraemer, H. Kappa coefficient. In S. Kotz and
N. L. Johnson (Eds.), Encyclopedia of Statistical
Sciences. (1982), John Wiley & Sons.

[14] Witten, I., and Frank, E. Data Mining: Prac-
tical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann,
1999.

8


