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Abstract
The idea of using the Web as a corpus for lin-
guistic research is getting increasingly popular.
Most often this means using Web search engine
page hit counts as estimates for n-gram frequen-
cies. While the results so far have been very en-
couraging, some researchers worry about what
appears to be the instability of these estimates.
Using a particular NLP task, we compare the
variability in the n-gram counts across different
search engines as well as for the same search en-
gine across time, finding that although there are
measurable differences, they are not statistically
significantly different for the task examined.

1 Introduction

In 2001, (Banko & Brill 01) advocated for the cre-
ative use of very large text collections as an alter-
native to sophisticated algorithms and hand-built
resources. They demonstrated the idea on a lexi-
cal disambiguation problem for which labeled ex-
amples are available “for free”. The problem was
to choose which of 2-3 commonly confused words
(e.g., {principle, principal}) were appropriate for
a given context. The labeled data was “free” be-
cause the authors could safely assume that in the
carefully edited text in their training set the words
are used correctly. They show that even using a
very simple algorithm, the results continue to im-
prove log-linearly with more training data, even
out to a billion words. They conclude that get-
ting more data may be a better idea than fine-
tuning algorithms. Today, the obvious source of
very large data is the Web.

Using the Web as a training and testing corpus
is attracting ever-increasing attention. In 2003
the journal Computational Linguistics had a spe-
cial issue (Kilgariff & Grefenstette 03), and in
2005 the Corpus Linguistics conference includes
a special workshop on the Web as Corpus. The
Web has been used as a corpus for a variety of
NLP tasks including, but not limited to: machine
translation (Grefenstette 98; Resnik 99; Cao & Li
02; Way & Gough 03), question answering: (Du-
mais et al. 02; Soricut & Brill 04), word sense dis-

ambiguation (Mihalcea & Moldovan 99; Rigau et
al. 02; Santamaŕıa et al. 03; Zahariev 04), extrac-
tion of semantic relations, (Chklovski & Pantel
04; Idan Szpektor & Coppola 04; Shinzato & Tori-
sawa 04), anaphora resolution: (Modjeska et al.
03), prepositional phrase attachment: (Volk 01;
Calvo & Gelbukh 03), language modeling: (Zhu
& Rosenfeld 01; Keller & Lapata 03), and so on.

Despite the variability of applications, the most
popular use of the Web as a corpus is as a means
to obtain page hit counts as an estimate for n-
gram word frequencies. (Keller & Lapata 03)
demonstrate a high correlation between page hits
and corpus bigram frequencies, as well as be-
tween page hits and plausibility judgments. They
propose using Web counts as a baseline unsu-
pervised method for many NLP tasks and ex-
perimented with eight NLP problems (machine
translation candidate selection, spelling correc-
tion, adjective ordering, article generation, noun
compound bracketing, noun compound interpre-
tation, countability detection and prepositional
phrase attachment), and show that variations on
n-gram counts often perform nearly as well as
more elaborate methods (Lapata & Keller 05).
More recently, we have shown that the Web has
the potential for more than just a baseline. Using
various Web-derived surface features, in addition
to paraphrases and n-gram counts, we demon-
strated state-of-the-art results on the task of noun
compound bracketing (Nakov & Hearst 05).

2 Problems and Limitations

Web search engines provide a convenient way for
researchers to obtain statistics over an enormous
corpus, but using them for this purpose is not
without drawbacks.

First, there are limitations on what kinds of
queries can be issued, mainly because of the lack
of linguistic annotation. For example, if we want
to estimate the probability that health precedes
care: #(′′health care′′)

#(care) , we need the frequencies of



“health care” and care, where both words are
nouns. The problem is that a query for care only
will return many pages where it is used as a verb,
while in health care it would nearly always occur
as a noun. Even when both health and care are
used as nouns and are adjacent, they may belong
to different NPs but sit next to each other only by
chance. Furthermore, since search engines ignore
punctuation characters, the two nouns may also
come from different sentences.

Other Web search engine restrictions prevent
querying directly for terms containing hyphens or
possessive markers such as amino-acid sequence
and protein synthesis’ inhibition. They also disal-
low querying for a term like bronchoalveolar lavage
(BAL) fluid, which contains an internal paren-
thesized abbreviation. They also do not support
queries that make use of generalized POS infor-
mation such as

stem cells VERB PREP DET brain

in which the uppercase patterns stand for any
verb, any preposition and any determiner, e.g.,
stem cells derived from the brain.

Furthermore, using page hits as a proxy for
n-gram frequencies can produce some counter-
intuitive results. Consider the bigrams w1w4,
w2w4 and w3w4 and a page that contains each
bigram exactly once. A search engine will con-
tribute a page count of 1 for w4 instead of a fre-
quency of 3; thus the number of page hits for w4

can be smaller than that for the sum of the bi-
grams that contain it. See (Keller & Lapata 03)
for more potential problems with page hits.

Another potential problem is instability of the
n-gram counts. Today Web search engines are
too complex to be run on a single machine, and
instead the queries are served by hundreds, some-
times thousands of servers, which collaborate to
produce the final result. In addition, the Web is
dynamic, since at any given time some pages dis-
appear, some appear for the first time, and some
change frequently. Thus search engines need to
update their indexes frequently, and in fact the
different engines compete on how “fresh” their in-
dexes are. As a result, the number of page hits for
a given query changes over time in unpredictable
ways.

The indexes themselves are too big to be stored
on a single machine and so are spread across mul-
tiple ones (Brin & Page 98). For availability and
efficiency reasons, there are also multiple copies

of the same part of the index, and these are not
always synchronized with one another since the
different copies are updated at different times. As
a result, if we issue the same query multiple times
in rapid succession, we may connect to different
physical machines and get different results. This
is known as search engine “dancing”.

From a research perspective, “dancing” and dy-
namics over time are potentially undesirable, as
they preclude the exact replicability of any results
obtained using search engines. At best, one could
reproduce the same initial conditions, and expect
similar outcomes.

Another potentially undesirable aspect of using
Web search engines is that two of the major ones
(Google and Yahoo) do not provide exact num-
bers of page hits, but instead show rounded esti-
mates. For example, at the moment of prepara-
tion of this paper, Google returns 79,000,000 page
hits for the exact phrase query “search engine”,
and Yahoo Search returns 127,000,000. Google
and Yahoo provide exact numbers of page hits
only in case these numbers are relatively small.
MSN Search, by contrast, does not round its page
hits, and it returns 46,502,549 for the “search en-
gine” query. This rounding is probably done be-
cause for most users’ purposes, exact counts are
not necessary once the numbers get somewhat
large, and computing the exact numbers is ex-
pensive if the index is distributed and continually
changing. It might also indicate that under high
load search engines sample from their indexes,
rather than performing an exact computation.

It is unclear what the implications of these in-
consistencies are on using the Web to obtain n-
gram frequencies. If the estimates are close to ac-
curate and consistent across queries, this should
not have a big impact for most applications, since
they only need the ratios of different n-grams.

We decided that the best way to determine the
impact of rounding and inconsistencies was to de-
sign a suit of experiments organized around a real
NLP task. We chose noun compound bracketing,
which, while being a simple task, can be solved us-
ing several different methods which make use of
n-grams of different lengths. In the next two sec-
tions we first describe the noun compound brack-
eting problem, and then report the results of com-
parative experiments on this problem.



3 Noun Compound Bracketing

Consider the following contrastive pair of noun
compounds:

(1) liver cell antibody
(2) liver cell line

In example (1) an antibody targets a liver cell,
while (2) refers to a cell line which is derived
from the liver. Although equivalent at the part
of speech (POS) level, these two noun compounds
have different syntactic trees. The distinction can
be represented as a binary tree or, equivalently, as
a binary bracketing:

(1b) [ [ liver cell ] antibody ] (left bracketing)
(2b) [ liver [cell line] ] (right bracketing)

3.1 Unigrams and Bigrams

The problem of choosing the correct bracketing
has been traditionally addressed using unigram
and bigram frequencies (Marcus 80; Pustejovsky
et al. 93; Resnik 93; Lauer 95; Lapata & Keller
05). In related work, a distinction is often made
between what is called the dependency model and
the adjacency model (Lauer 95). The main idea
is as follows. For a given 3-word NC w1w2w3,
there are two reasons it may take on right brack-
eting, [w1[w2w3]]. Either (a) w2w3 is a compound
(modified by w1), or (b) w1 and w2 independently
modify w3. This distinction can be seen in the
examples home health care (health care is a com-
pound modified by home) versus adult male rat
(adult and male independently modify rat).

The adjacency model checks (a), whether w2w3

is a compound (i.e., how strongly w2 modifies w3

as opposed to w1w2 being a compound) to decide
whether or not to predict a right bracketing. The
dependency model checks (b) whether w1 modifies
w3 (as opposed to w1 modifying w2).

Adjacency and dependency could be computed
via frequencies, but we can also use probabilities.
Let Pr(wi → wj |wj) be the probability that the
word wi precedes a given word wj . So in a depen-
dency model we can compare Pr(w1 → w3|w3) to
Pr(w1 → w2|w2). The adjacency model compares
Pr(w2 → w3|w3) to Pr(w1 → w2|w2), i.e., the as-
sociation strength between the last two words vs.
that between the first two. If the first probability
is larger than the second one, the model predicts
right bracketing.

The probability Pr(w1 → w2|w2) can be esti-
mated as #(w1, w2)/#(w2), where #(w1, w2) and

#(w2) are the corresponding bigram and unigram
frequencies. They can be approximated as the
number of pages returned by a search engine in
response to queries for the exact phrase “w1 w2”
and for the word w2. In our experiments below we
smoothed1 each of the frequencies by adding 0.5
to avoid problems caused by nonexistent n-grams.

In both models, Pr(wi → wj |wj) can be re-
placed by some (possibly symmetric) measure of
association between wi and wj . Below we use Chi
squared (χ2) and mutual information (MI). See
(Nakov & Hearst 05) for details on how to com-
pute χ2 on the Web.

3.2 Longer n-grams

Since the Web is a very big corpus, we can hope
to obtain reliable estimates for longer n-grams
too. Below we list some other kinds of statistics
that can be computed from the Web that we have
found helpful in other work (Nakov & Hearst 05),
and that are used in the experiments in the next
section.

First, the genitive ending, or possessive marker,
can be a useful indicator. The phrase brain’s stem
cells suggests a right bracketing for brain stem
cells, while brain stem’s cells favors a left brack-
eting. In some cases, we can query for this di-
rectly: although search engines drop the apostro-
phe, they keep the s, so we can query for “brain’s”
(but not for “brains’ ”). We then compare the
number of times the possessive marker appeared
on the second versus the first word, to make a
bracketing decision.

Abbreviations are another important feature.
For example, “tumor necrosis factor (NF)” sug-
gests a right bracketing, while “tumor necrosis
(TN) factor” would favor left. We would like to
issue exact phrase queries for the two potential
abbreviation patterns and see which one is more
frequent. Unfortunately, the search engines drop
the brackets and ignore the capitalization, so we
issue queries with the parentheses removed, as in
“tumor necrosis factor nf”. This produces highly
accurate results, although errors occur when the
abbreviation is an existing word (e.g., me), a state
(e.g., CA), a Roman digit (e.g., IV), etc.

Another reliable feature is concatenation. Con-
sider the NC health care reform, which is left-
bracketed. Now, consider the bigram “health

1Zero counts sometimes happen for #(w1, w3), but are
rare in general for unigrams and bigrams on the Web, and
there is no need for a more sophisticated smoothing.



care”. At the time of writing, Google estimates
80,900,000 pages for it as an exact term. Now,
if we try the word healthcare we get 80,500,000
hits. At the same time, carereform returns just
109. This suggests that authors sometimes con-
catenate words that act as compounds. We find
below that comparing the frequency of the con-
catenation of the left bigram to that of the right
(adjacency model for concatenations) often yields
accurate results. We also try the dependency
model for concatenations, as well as the concate-
nations of two words in the context of the third
one (i.e., compare frequencies of “healthcare re-
form” and “health carereform”).

Further, we try to look inside the internal in-
flection variability. The idea is that if “tyrosine
kinase activation” is left-bracketed, then the first
two words probably make a whole and thus the
second word can be found inflected elsewhere but
the first word cannot, e.g., “tyrosine kinases ac-
tivation”. Alternatively, if we find different inter-
nal inflections of the first word, this would favor
a right bracketing.

Finally, we try switching the word order of the
first two words. If they independently modify the
third one (which implies a right bracketing), then
we could expect to see also a form with the first
two words switched, e.g., if we are given “adult
male rat”, we would also expect “male adult rat”.

Figure 1: Comparison over time for Google.
Precision for any language, no inflections. Aver-
age recall is shown in parentheses.

4 Experiments and Results

We performed series of experiments comparing
the accuracy of the methods described above
across four dimensions: (1) search engine (Google
vs. Yahoo vs. MSN), (2) time, (3) language filter

Figure 2: Comparison over time for MSN
Search. Precision for any language, no inflec-
tions. Average recall is shown in parentheses.

Figure 3: Comparison by search engine. Pre-
cision (in %) for any language, no inflections. All
results are for 6/6/2005. Average recall is shown
in parentheses.

Figure 4: Comparison by search engine. Re-
call (in %) for any language, no inflections. All
results are for 6/6/2005.



(English only vs. any), and (4) inflected word-
forms usage.

In these experiments we compared the results
using the Chi squared test for statistical signifi-
cance as computed by (Lapata & Keller 05). In
nearly every case we found that the differences
were not statistically significant. The only ex-
ceptions are observed for concatenation triple in
tables 2 and 3 (marked with a *).

We experimented with the dataset from (Lauer
95), in order to produce results comparable to
those of both Lauer and Keller & Lapata. The
set consists of 244 unambiguous 3-word noun
compounds extracted from Grolier’s encyclope-
dia; however, only 216 of these NCs are unique.

(Lauer 95) derived n-gram frequencies from the
Grolier’s corpus and tested the dependency and
the adjacency models using this text. To help
combat data sparseness issues he also incorpo-
rated a taxonomy and some additional informa-
tion.

At the time of writing, the Google search engine
reportedly indexes over 8 billion pages, i.e., about
8 trillion words, which is about 80,000 times the
size of the British National Corpus (100 million
words), thus confirming it as a gateway to a very
large corpus. We were unable to find official in-
formation about the sizes of Yahoo and MSN
Search, but they probably index a similar num-
ber of pages. When still in Beta version, MSN
announced indexing over 5 billion pages.

For all n-grams, we issued exact phrase queries
within a single day. Unless otherwise stated, the
queries were not inflected and no language filter
was applied. We used a threshold of 5 for the dif-
ference between the left- and the right-predicting
n-gram frequencies: we did not make a decision
when the module of that difference was below that
threshold. This slightly lowers the recall but po-
tentially increases the precision.

Figures 1 and 2 show the variability over time
for Google and for MSN Search respectively. (As
Yahoo behaves similarly to Google, it is omitted
here due to space limitations.) We chose time
samples at varying time intervals in an attempt to
capture index changes, in case they happen in the
same fixed time intervals. For Google (see Figure
1), we observe a low variability in the adjacency-
and dependency-based models and a more siz-
able variability for the other models and features.
The variability is especially high for apostrophe

and concatenation triple: while in the first two
time snapshots the precision of the apostrophes
is much lower than in the last two, it is the re-
verse for concatenation.

MSN Search exhibits a more uniform behavior
overall (see Figure 2), however while the variabil-
ity in the adjacency- and dependency-based mod-
els is still a little bit lower than that of the last
five features, it is bigger than Google’s. We think
that this is due to the rounding: because Google’s
counts are rounded, they change less over time, es-
pecially for very large counts. By contrast, these
counts are exact for MSN Search, which makes
its unigram and bigram counts more sensitive to
variation. For the higher order n-grams, both en-
gines exhibit a higher variability: these counts
are smaller, and so are more likely to be rep-
resented by exact numbers in Google, and thus
they are also more sensitive to index updates for
both search engines. However, the difference be-
tween the precision for May 4, 2005 and that for
the other five dates is statistically significant for
MSN Search only.

Figure 3 compares the three search engines at
the same fixed time point. The biggest difference
in precision is exhibited by concatenation triple
which in MSN Search achieves a precision of 92%,
which is better than the others’ by 11% (statisti-
cally significant). Other large variations (not sta-
tistically significant) are seen in apostrophe, re-
order, and to a lesser extent in the adjacency-
and dependency-based models. As we expected,
MSN Search looks best overall (especially on the
unigram- and bigram-based models), which we at-
tribute to the better accuracy of its n-gram esti-
mates. Google is almost 5% ahead of the others
on apostrophes and reorder. Yahoo leads on abbre-
viations and inflection variability. The fact that
different search engines exhibit strength on differ-
ent kinds of queries and models shows the poten-
tial of combining them: in a majority vote com-
bining some of the best models, we would choose
concatenation triple from MSN Search and apos-
trophe from Google and abbreviations from Yahoo
(together with concatenation dependency, χ2 de-
pendency and χ2 adjacency). Figure 4 shows the
corresponding recall for some of the methods (it is
about 100% for the rest). We can see that Google
exhibits a slightly higher recall, which suggests it
might have a bigger index compared to Yahoo and
MSN Search.



Figure 5: Comparison by search engine: any
language vs. English. Precision shown in %,
no inflections. All results are for 6/6/2005.

Figure 6: Comparison by search engine: any
language vs. English. Recall shown in %, no
inflections. All results are for 6/6/2005.

Figure 7: Comparison by search engine: no
inflections vs. using inflections. Precision
shown in %, any language. All results are for
6/6/2005.

Figure 8: Comparison by search engine: no
inflections vs. using inflections. Recall shown
in %, any language. All results are for 6/6/2005.

Figure 5 compares, on a fixed date (6/6/2005),
for all the three search engines the impact of
language filtering, meaning requiring only doc-
uments in English versus no restriction on lan-
guage. The impact of the language filter on the
precision seems minor and inconsistent for all
three search engines: sometimes the results are
improved slightly and sometimes they are neg-
atively impacted. Figure 6 compares the corre-
sponding recall for some of the models (the rest
are omitted as the recall for them is about 100%).
As we can see, using English only leads to a drop
in recall, as one could expect, but this drop is
small.

Finally, Figure 7 compares for the three search
engines the impact of using inflections2. When we
estimate the frequency of a word, e.g., tumor, we
also add up the frequencies of all possible variants,
e.g., tumors, tumour, tumours. For bigrams, we
inflect only the second word, and for n-grams only
the last one. The results are again mixed, but
the impact on precision is more significant com-
pared to that of the language filter, especially on
the high-order n-grams (of course, there is no im-
pact on inflection variability). Figure 8 compares
the corresponding recall for some of the models
(for the rest it is about 100%). As one would ex-
pect, the recall goes up when using inflection. The
change for apostrophe, reorder and concatenation
triple is again the biggest.

5 Conclusions and Future Work

Using a real NLP task, we have shown that effects
of variability over time and across search engines,

2We made use of Carroll’s morphological tools:
http://www.cogs.susx.ac.uk/lab/nlp/carroll/morph.html.



as well as using language filters and morphologi-
cally inflected wordforms, do not significantly ef-
fect the results of an NLP application and thus
do not greatly impact the interpretation of results
obtained using Web-derived n-gram frequencies.

In order to further bolster these results we will
need to perform similar studies for other NLP
tasks, which make use of Web-derived n-gram es-
timates. We would also like to run similar exper-
iments for languages other than English, where
the language filter could be much more important,
and where the impact of the inflection variability
may differ, especially in case of a morphologically
rich language.
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