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Abstract

Extraction of semantic relations from bioscience text

by

Barbara Rosario

Doctor of Philosophy in Information Management and Systems

and the Designated Emphasis in Communication, Computation and Statistics

University of California, Berkeley

Professor Marti Hearst, Chair

A crucial area of Natural Language Processing is semantic analysis, the study

of the meaning of linguistic utterances. This thesis proposes algorithms that ex-

tract semantics from bioscience text using statistical machine learning techniques. In

particular this thesis is concerned with the identification of concepts of interest (“en-

tities”, “roles”) and the identification of the relationships that hold between them.

This thesis describes three projects along these lines.

First, I tackle the problem of classifying the semantic relations between nouns

in noun compounds, to characterize, for example, the “treatment-for-disease” rela-

tionship between the words of migraine treatment versus the “method-of-treatment”

relationship between the words of sumatriptan treatment. Noun compounds are fre-

quent in technical text and any language understanding program needs to be able to

interpret them. The task is especially difficult due to the lack of syntactic clues. I

propose two approaches to this problem. Second, extending the work to the sentence

level, I examine the problem of distinguishing among seven relation types that can

occur between the entities “treatment” and “disease” and the problem of identifying

such entities. I compare five generative graphical models and a neural network, using
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lexical, syntactic, and semantic features. Finally, I tackle the problem of identifying

the interactions between proteins, proposing the use of an existing curated database

to address the problem of the lack of appropriately labeled data. In each of these

cases, I propose, design and implement state-of-the art machine learning algorithms.

The results obtained represent first steps on the way to a comprehensive strategy

of exploiting machine learning algorithms for the analysis of bioscience text.

Professor Marti Hearst, Chair Date
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Chapter 1

Introduction

1.1 Extracting semantics from bioscience text

A crucial area of Natural Language Processing is semantic analysis, the study of the

meaning of linguistic utterances. This thesis is part of a larger effort to investigate

what can be called “statistical semantic parsing,” that is, the attempt to extract se-

mantics from text and to build a knowledge representation of the concepts expressed

in the text, using statistical machine learning techniques (for an overview, see Grish-

man, 1986).

This thesis proposes algorithms that extract semantics in terms of “entities” and

“relations” from bioscience text. As an example, I envision a system that when asked

the question “What are the treatments of cervical carcinoma” identifies the following

sentence as containing an answer: “Stage Ib and IIa cervical carcinoma can be cured

by radical surgery or radiotherapy” and extracts the text strings radical surgery and

radiotherapy to provide the specific answers. Similarly, I envision a system that

returns “intranasal migraine treatment” to a question such as “What are the methods

of administration of headache treatment,” or that, when given the question “What

1



Chapter 1. Introduction

are the side effects of extracorporeal circulation in infants?,” extracts hearing loss

from the following sentence: “Neonatal BAEP threshold recordings were of limited

value for predicting subsequent hearing loss common in ECMO-treated survivors.”

Such a system needs to engage in a form of inductive reasoning to infer that

migraine and headache are closely related, that radiotherapy is a treatment, that

ECMO is a type of extracorporeal circulation and that neonatal is used to talk about

infants. It needs to understand what the semantic relations are that hold between the

concepts (to distinguish between a cure kind of relation in the “migraine” sentence

and a side effect in the “neonatal” sentence) and it needs to identify the specific

strings of text that contain the answers to the queries.

Some of the core issues of “understanding language” are the identification of con-

cepts of interest and the identification of the relationships that hold between them.

In this thesis I address these problems.

I position my work to bridge the fields of statistical machine learning and biomed-

ical natural language processing. I propose state-of-the art machine learning algo-

rithms; in particular, I design and implement graphical models specifically for the

problems tackled. Graphical models (Jordan, 2004) represent a marriage between

probability theory and graph theory. They are playing an increasingly important

role in the machine learning field. I propose applying these models (and others) to

practical but very difficult and important problems in the bioscience domain.

I have chosen the bioscience application area for several reasons. First, very useful

applications can be developed in this domain; as an example, the identification of the

interactions between proteins is one of the most important challenges in modern biol-

ogy; thousand of articles are published every year on this subject, most of which are

available electronically but only in unstructured text format. Automatic mechanisms

are needed to extract the information from these articles, to help researchers find

what they need, but also more ambitiously, to make inferences about propositions

2



Chapter 1. Introduction

that hold between scientific concepts.

Another reason for tackling bioscience text is that it may be easier to process

automatically than ordinary text. It is less ambiguous, and the concepts and processes

it describes are more “mechanical” and therefore easier to represent by a computer.

Finally, there are many resources for this domain that we can exploit, including

journal articles, domain-specific ontologies and manually curated databases.

1.2 Outline of this thesis

This thesis is structured as follows:

• In Chapter 2 I describe two approaches that I developed for classifying the

semantic relations between nouns in noun compounds, to characterize, for ex-

ample, the “treatment-for-disease” relationship between the words of migraine

treatment versus the “method-of-treatment” relationship between the words of

sumatriptan treatment. Noun compounds are very frequent in technical text and

any automatic parsing program needs to be able to interpret them. The task

is especially difficult due to the lack of syntactic clues. In the first approach,

I propose a classification algorithm that achieves accuracies as high as 62% for

the classification of noun compounds into one out of eighteen semantic rela-

tions. The second approach is linguistically motivated and explores the use of a

lexical hierarchy for the purpose of placing words from a noun compound into

categories, and then using this category membership to determine the relation

that holds between the nouns.

Most related work relies on hand-written rules of one kind or another (Finin,

1980; Vanderwende, 1994; Rindflesch et al., 2000b) or tackles easier problems

(Lapata, 2000, for example, addresses a binary classification problem).
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Chapter 1. Introduction

• In Chapter 3 I examine the problem of distinguishing among seven relation

types that can occur within a sentence between the entities “treatment” and

“disease,” as well as the problem of identifying such entities (role extraction).

I compare five generative graphical models and a neural network, using lexical,

syntactic, and semantic features.

While there is much prior work on role extraction, little work has been done

for relationship recognition. Moreover, many papers that claim to be doing

relationship recognition in reality address the task of role extraction: (usually

two) entities are extracted and the relationship is implied by the co-occurrence

of these entities or by the presence of some linguistic expression (Agichtein and

Gravano, 2000; Zelenko et al., 2002); in the related work there is, to the best of

my knowledge, no attempt to distinguish between different relations that can

occur between the same semantic entities. Moreover, most of the related work

on relationship extraction assumes the entity extraction task is performed by

another system and the entities of interests therefore are given as input. The

models I propose in this thesis do not make this assumption and indeed perform

role and relation extraction simultaneously.

• In Chapter 4 I apply the statistical models proposed in Chapter 3 to another

important application, the identification of the interactions between proteins

in bioscience text. A major impediment to such work (and in general to the

development of many statistical methods) is the lack of appropriately labeled

data. Labeling is a very time-consuming and subjective process; moreover,

especially for “semantic tasks,” different sets of labeled data are needed for

each domain and perhaps for each application. I propose the use of existing

curated database, the HIV-1 Human Protein Interaction Database to serve as

a proxy for training data.

4



Chapter 1. Introduction

In the bioscience domain there have recently been many attempts to auto-

matically extract protein-protein interactions, however, the work on relation

classification is primary done through hand-built rules. Some approaches sim-

ply report that a relation exists between two proteins but do not determine

which relation holds (Bunescu et al., 2005; Marcotte et al., 2001; Ramani et al.,

2005), while most others start with a list of interaction verbs and label only

those sentences that contain these trigger verbs (Blaschke and Valencia, 2002;

Blaschke et al., 1999a; Thomas et al., 2000; Ahmed et al., 2005; Phuong et al.,

2003; Pustejovsky et al., 2002).

In this thesis, the statistical methods proposed determine the interaction types

and do not use trigger words explicitly.

These projects constitute a significant step toward the goal of extracting propo-

sitional information from text.

5



Chapter 2

Noun Compounds

2.1 Introduction

One of the important challenges of biomedical text, along with most other technical

text, is the proliferation of noun compounds. A typical article title is shown below;

it consists of a cascade of four noun phrases linked by prepositions:

Open-labeled long-term study of the efficacy, safety, and tolerability of

subcutaneous sumatriptan in acute migraine treatment.

A language understanding program needs to be able to interpret the noun com-

pounds (NCs) in order to ascertain sentence meaning. NCs present challenges for

natural language processing, such as syntactic attachment and semantic interpreta-

tion. I argue that the real concern in analyzing such a title is in determining the rela-

tionships that hold between different concepts, rather than on finding the appropriate

attachments.1 For example, we want to characterize the “treatment-for-disease” rela-

1Or at least this is the first step that must be taken. If we can determine the semantic relation
between the nouns in a two-word noun compound, and if we also know how to parse longer noun
compounds, then we can fully interpret them (assuming also that we know how to combine the
meanings of the multiple relations).
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Chapter 2. Noun Compounds

tionship between the words of migraine treatment versus the “method-of-treatment”

relationship between the words of sumatriptan treatment. These relations are in-

tended to be combined to produce larger propositions that can then be used in a

variety of interpretation paradigms, such as abductive reasoning or inductive logic

programming.

Interpretation of noun compounds is highly dependent on lexical information; it

is the meaning of the words migraine and sumatriptan that determines their different

relations with the word treatment.

I present here two lines of research that tackle this problem. In the first ap-

proach (Rosario and Hearst, 2001), I describe a classification algorithm for identifying

the types of possible relationships between two-word noun compounds. In the second

approach (Rosario et al., 2002) I use a lexical hierarchy and show that mere mem-

bership within a particular sub-branch of the hierarchy is sufficient in many cases for

assignment of the appropriate semantic relation.

The remainder of this chapter is organized as follows: Section 2.2 discusses noun

compounds from a linguistic point of view, Section 2.3 describes my collection of NCs

in the biomedical domain, as well as the semantic relations that I identified for this

collection. Section 2.4 describes in some detail two linguistic theories of the semantics

of NCs and shows how theses theories are not appropriate for my collection and for

the relation identification task as I define it. Section 2.5 discusses related work and

finally in Sections 2.6 and 2.7 I describe the two different approaches I propose for

the semantic classification of NCs.

2.2 Noun compounds in the linguistic literature

There are a multitude of possible definitions for NCs. The most popular are (from

Lauer, 1995b):

7



Chapter 2. Noun Compounds

1. Noun premodifier: Any constituent can appear before a noun to form a NC:

out-in-the-wilds cottages is therefore considered a NC.

2. Compounds (phonological definition due to Chomsky, for English compounds):

words preceding a noun form a compound if they receive primary stress, thus

blackboard is a compound, while black board is not.

3. Complex Nominals: Levi (1978) chooses to include certain adjectives along

with nouns as possible compounding elements that she calls Complex Nomi-

nals. The adjectives she includes are non-predicative adjectives as in electrical

engineer or presidential refusal.

4. Noun Noun Compounds: any sequence of nouns that itself functions as a

noun.

5. Noun Noun Compounds: any sequence of nouns at least two words in length

that itself functions as a noun, but which contains no genitive markers and is

not a name.

In my work I use definition 4 (but I do not consider compounds with genitive

markers) and I do not include dvandva compounds.2

We can think of five different structures for NCs, at least for the English language

(Warren, 1978):

1. Morphological Structure

Warren says that the most important point is that, as a rule, the first noun

2Dvandva compounds are compounds with hyphens, such as poet-painter. Warren (1978) says
that these compounds are different from the others in that the modifier does not predicate something
about the second constituent, nor does it modify the meaning of the second constituent. The moti-
vation for combining poet and painter in poet-painter is different from the motivation of combining
girl and friend in girlfriend. In the former case, we want to convey that someone is not only a poet
but also a painter, and we are not trying to identify which painter, or to define what kind of painter
we are talking about; in the latter case, we want to make our reference more precise: poet-painter
has an expansion of reference scope, while girlfriend narrows the reference scope.

8



Chapter 2. Noun Compounds

does not take inflectional endings, such as plural or genitive suffices, but then

she lists exceptions to this rule: plural first-words (sports center, narcotics law)

and first-words with genitive -s (driver’s seat, women’s colleges).3

2. Syntactic Structure

Warren discusses several ways of parsing NCs with more than two constituents

(that she calls compounds-within-compounds) and shows the frequency and

distributions of various combinations. For example [[[spider leg] pedestal] table]

is left-branching within a left-branching structure, whereas [home [workshop

tool]] is right-branching within a left-branching structure.

3. Phonological Structure

Two fundamental stress patterns are identified: fore-stress (or first-stress) and

double-stress. Fore-stress involves primary stress on the first noun and sec-

ondary stress on the second noun (cowboy). Double-stress involves heavy stress

on both the first and second constituents: stone wall. Warren observes that cer-

tain semantic relations are connected with certain stress patterns and that stress

may be used to signal syntactic and semantic differences: for example, com-

pounds expressing material-artifact are usually pronounced with double stress

(bronze screws, brass wire) and compounds expressing Purpose or Origin are

pronounced with fore-stress.

4. Information Structure

Elements in a sentence are not equally important. Some elements are, commu-

nicatively, more important than others and have therefore a different degree of

“communicative dynamism.” Warren suggests that the same analysis is possi-

3Warren includes a short discussion about the controversy regarding such constructs and she
identifies the semantic relations of these compounds as either Purpose (driver’s seat) or Possession
(pastor’s cap).
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Chapter 2. Noun Compounds

ble for NCs and that the two constituents of a NC do not normally have equal

informative force, and that in NCs the first position is reserved to the element

with the highest degree of communicative dynamism.

5. Semantic Structure

NCs can be described as having a bi-partite structure, in that they consist of a

topic and a comment (Warren, 1978). The topic is what is being talked about

(represented by the head of the NC) and the comment is what is said about the

comment. The function of the comment is to make the reference of the topic

more precise. It restricts the reference scope of the topic by either classifying the

intended topic, or by identifying which of a number of known topics are being

referring to. The first case refers to NCs in which the comment has classifying

function (paraphrasable by: “that kind of -topic- that (verb) -comment-”), as in

bilge water (that kind of water that comes from bilge). The second case refers

to NCs in which comment has identifying function (paraphrasable by: “that

-topic- that (verb) (some specific) -comment-”), as in bathroom door (the door

that is attached to the bathroom). In other words, in the first case the comment

specifies which type of topic, in the second case, it specifies which instance of

the topic.

Within the category of semantic structure, Warren lists Idiomatization, Es-

tablished (those combinations that have become the generally accepted word

for their referent, like toothpaste instead of mouth hygiene paste) and Novel

Compounds (combinations that have been created for the occasion) and fi-

nally Participant Roles in which the constituents of the NC are semantically

related but there are several different semantic relations that can hold between

them. It is indeed the purpose of Warren (1978) to establish whether or not

10



Chapter 2. Noun Compounds

there is a limited number of possible types of semantic relations between the

constituents of compounds, and what these semantic relations are. According to

Warren, there are six major types of semantic relations than can be expressed in

compounds: Constitute, Possession, Location, Purpose, Activity-Actor, Resem-

blance. In Section 2.4.2 I describe in more detail Warren’s semantic relations

for NCs.

There are other important issues about NCs such as lexicalization, linguistic func-

tion, grammar (nominalizations vs. non-verbal compounds), and ambiguity. The

semantic structure of NCs is the focus of this chapter.

2.3 Noun compound collection and relations

To create a collection of noun compounds, I performed searches from MEDLINE,

which contains references and abstracts from thousands of biomedical journals.4 I

used several query terms, intended to span across different subfields. I retained only

the titles and the abstracts of the retrieved documents. On these titles and abstracts I

ran a part-of-speech tagger (Brill, 1995) and a program that extracts those sequences

of adjacent tokens tagged as nouns by the tagger (constituents).

As an example, the following sentence was extracted from an abstract of a medical

article:

The best multivariate predictors of influenza infections were

cough and fever with a positive predictive value of 79%.

4MEDLINE is the NLM’s premier bibliographic database covering the fields of medicine, nursing,
dentistry, veterinary medicine, the health care system, and the preclinical sciences. MEDLINE
contains bibliographic citations and author abstracts from more than 4,800 biomedical journals
published in the United States and 70 other countries. The database contains over 12 million
citations dating back to the mid-1960’s. Coverage is worldwide, but most records are from English-
language sources or have English abstracts.
http://www.nlm.nih.gov/pubs/factsheets/medline.html.

11



Chapter 2. Noun Compounds

The tagger returns the following tags (the format being “word TAG”):

The DT best JJS multivariate JJ predictors NNS of IN

influenza NN infections NNS were VBD cough NN and CC

fever NN with IN a DT positive JJ predictive JJ value NN

of IN 79 CD % NN . .

from which I extract ‘‘influenza infections’’ because the tags of these words

are both nouns (one singular and one plural).

I extracted NCs with up to 6 constituents, but for this work I consider only NCs

with 2 constituents.

For this collection of NCs, I manually developed a set of semantic relations that

hold between the constituent nouns. In this work I aim for a representation that

is intermediate in generality between standard case roles (such as Agent, Patient,

Topic, Instrument, Fillmore, 1968, 1977), and the specificity required for information

extraction. I have created a set of relations, shown in Table 2.1, that are sufficiently

general to cover a significant number of noun compounds, but that can be domain-

specific enough to be useful in analysis.

The problem remains of determining what the appropriate relations are. I wanted

to support relationships between entities that are shown to be important in cognitive

linguistics. In theoretical linguistics, there are contradictory views regarding the

semantic properties of noun compounds. As described in Section 2.4, Levi (1978)

argues that there exists a small set of semantic relationships that NCs may imply. In

contrast, Dowing (1977) argues that the semantics of NCs cannot be exhausted by

any finite listing of relationships. Between these two extremes lies Warren’s taxonomy

of six major semantic relations organized into a hierarchical structure (Warren, 1978).

I tried to produce relations that correspond to linguistic theories such as those

of Levi and Warren, but in many cases these are inappropriate. Levi’s classes are

12



Chapter 2. Noun Compounds

too general for my purposes; for example, she collapses the “location” and “time”

relationships into one single class “In” and therefore field mouse and autumnal rain

belong to the same class. Warren’s classification schema is much more detailed, and

there is some overlap between the top levels of Warren’s hierarchy and my set of

relations. For example, my “Cause (2-1)” for flu virus corresponds to her “Causer-

Result” of hay fever, and my “Person Afflicted” (migraine patient) can be thought as

Warren’s “Belonging-Possessor” of gunman. Warren differentiates some classes also

on the basis of the semantics of the constituents, so that, for example, the “Time”

relationship is divided up into “Time-Animate Entity” of weekend guests and “Time-

Inanimate Entity” of Sunday paper. (These issues are described in more detail in

Section 2.4.)

My classification is based on the kind of relationships that hold between the

constituent nouns rather than on the semantics of the head nouns. By inspecting the

examples, I identified the 38 relations shown in Table 2.1.

For the automatic classification task described in Section 2.6, I used only the 18

relations (indicated in bold in Table 2.1) for which an adequate number of examples

were found in the NC collection. Many NCs were ambiguous, in that they could be de-

scribed by more than one semantic relationship. In these cases, I simply multi-labeled

them: for example, cell growth is both “Activity” and “Change,” tumor regression is

“Ending/reduction” and “Change” and bladder dysfunction is “Location” and “De-

fect.” My approach handles this kind of multi-labeled classification.

Two relation types are especially problematic. Some compounds are non-compositional

or lexicalized, such as vitamin k and e2 protein; others defy classification because the

nouns are subtypes of one another. This group includes migraine headache, guinea

pig, and hbv carrier. I placed all these NCs in a catch-all category. I also included a

“wrong” category containing word pairs that were incorrectly labeled as NCs.5 (I did

5The percentage of the word pairs extracted that were not true NCs was about 6%; some examples

13
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not remove them because I envision my classification system as part of a pipeline: if

my system can recognize that certain NCs are “wrong”, then we could try to recover

from the erroneous tagging. In any case, keeping the “wrong” class implies that we

have an additional class, and should we have a perfect tagger, we would not need this

class any more and the classification problem would be easier.)

The relations were found by iterative refinement based on looking at 1880 ex-

tracted compounds (described in the next section) and finding commonalities among

them. Labeling was done by the author and by a biology student. The NCs were

classified out of context, thus making resolution of ambiguities difficult in some cases.

These relations are intended to be combined into larger propositions. For example,

consider migraine treatment, to which I have assigned the relation “Purpose.” This

can be described by the proposition Purpose(treatment, migraine). We can then

add semantic information for the two consituent nouns: migraine is a Disease and

treatment falls into Therapeutic Techniques (see Section 2.6). This allows us to infer

the following proposition: Purpose(Therapeutic Techniques, Disease); we can also

use various degree of generality, and decide, for example, that we want to be more

specific and describe migraine as a Nervous System Disease instead: we would have

then Purpose(Therapeutic Techniques, Nervous System Diseases). A representation

such as this allows for flexibility in the detail of the semantics. The end goal is to

combine these relationships in NCs with more than two constituent nouns, as in the

example intranasal migraine treatment.

The collection of NCs is publicly available at:

http://biotext.berkeley.edu/data/nc data.html.

Section 2.4 below describes in detail some linguistic theories. The reader not

interested in a linguistic discussion can go directly to Section 2.5. I briefly summarize

are: treat migraine, ten patient, headache more. I do not know, however, how many NCs I missed.
The errors occurred when the wrong label was assigned by the tagger.

14



Chapter 2. Noun Compounds

Name N Examples
Wrong parse (1) 109 exhibit asthma, ten drugs
Subtype (4) 393 hbv carrier, t1 tumour
Activity/Physical process (5) 59 bile delivery, virus reproduction
Ending/reduction 8 migraine relief, headache resolution
Beginning of activity 2 headache induction, headache onset
Change 26 papilloma growth, tissue reinforcement
Produces (7) 47 polyomavirus genome, actin mrna
Cause (1-2) (20) 116 asthma hospitalizations, aids death
Cause (2-1) 18 flu virus, influenza infection
Characteristic (8) 33 receptor hypersensitivity, cell immunity
Physical property 9 blood pressure, artery diameter
Defect (27) 52 hormone deficiency, csf fistulas
Physical Make Up 6 blood plasma, bile vomit
Person afflicted (15) 55 aids patient, headache group
Demographic attributes 19 childhood migraine, infant colic
Person/center who treats 20 headache specialist, children hospital
Research on 11 asthma researchers, headache study
Attribute of clinical study (18) 77 headache parameter, attack study
Procedure (36) 60 tumor marker, brain biopsy
Frequency/time of (2-1) (22) 25 headache interval, influenza season
Time of (1-2) 4 morning headache, weekend migraine
Measure of (23) 54 asthma mortality, hospital survival
Standard 5 headache criteria, society standard
Instrument (1-2) (33) 121 aciclovir therapy, laser irradiation
Instrument (2-1) 8 vaccine antigen, biopsy needle
Instrument (1) 16 heroin use, internet use, drug utilization
Object (35) 30 bowel transplantation, kidney transplant
Misuse 11 drug abuse, acetaminophen overdose
Subject 18 headache presentation, glucose metabolism
Purpose (14) 61 headache drugs, hiv medications
Topic (40) 38 vaccination registries, health education
Location (21) 145 brain artery, tract calculi, liver cell
Modal 14 emergency surgery, trauma method
Material (39) 28 formaldehyde vapor, aloe gel, latex glove
Bind 4 receptor ligand, carbohydrate ligand
Activator (1-2) 6 acetylcholine receptor, pain signals
Activator (2-1) 4 headache trigger, headache precipitant
Inhibitor 11 adrenoreceptor blockers
Defect in Location (21 27) 157 lung abscess, artery aneurysm, brain disorder
Total number of labeled NCs 1880

Table 2.1: The semantic relations defined via iterative refinement over a set of noun compounds.

The relations shown in boldface are those used in the experiments described in Section 2.6. Relation ID

numbers (used in Section 2.6) are shown in parentheses by the relation names. The second column shows

the number of labeled examples for each class; the last row shows a class consisting of compounds that

exhibit more than one relation. The notation (1-2) and (2-1) indicates the directionality of the relations.

For example, Cause (1-2) indicates that the first noun causes the second, and Cause (2-1) indicates the

converse. 15
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the discussion of Section 2.4 at the beginning of next section.

2.4 Semantic theories in the linguistic literature

As mentioned in Section 2.3, I would like my classification schema for the NC relations

to correspond to linguistic theories. In this section, I describe some of these theories

and show how they are not appropriate for my collection of NCs.

The semantic properties of NCs have been hotly debated in linguistics, with nu-

merous contradictory views being proposed. On one end of the scale, Levi (1978)

suggests that that there exists a very small set of possible semantic relationships

that NCs may imply. In contrast, Dowing (1977) performed a series of psychological

experiments and concluded that the semantics of NCs cannot be exhausted by any

finite listing of relationships (however, she acknowledges that some relations are more

common than others). Between the two ends of this scale, there exists a range of

semantic theories. Lauer (1995b) lists the following in order of the degree to which

they constrain the possible semantics: Leonard (1984); Warren (1978); Finin (1980).

From a computational point of view, if noun compound interpretation is entirely

pragmatic and context-dependent, as Dowing (1977) implies, then our task is indeed

very difficult, if not hopeless. If on the other hand, it is the case that there is a finite

small set of possible relations, then we have a basis for computational interpretation.

In the following subsections, I analyze two such theories: Levi (1978) and Warren

(1978). Levi (1978) is cited in virtually every paper on computational analysis on

NCs; her theory that all NCs can express only a very small set of semantic relations

(13) is very attractive from a computational point of view. It is also notable that

her theory derives from a theory of language and not from empirical investigation.

I decided to analyze Warren (1978) for exactly the opposite reason, that is, her

work “is primarily a report of the results of an empirical investigation. In other

16
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words, my main interest has been directed towards finding out facts about the semantic

patterns of a particular type of compound, rather than towards the question of how

to account for the compounding process in accordance with a particular theory of

language” (Warren, 1978). Warren’s approach is very similar to mine: she analyzed

4557 different compounds (while Levi’s collection consists only of about 200 examples)

and classified them according to the covert semantic relations they expressed.

(Note that both Levi and Warren also include orthographically joined morphemes

such as gunboat for Levi and armchair, seafood for Warren. They do not differentiate

the semantics of continuous compounds vs. the semantics of compounds of separate

words. I consider only sequences of separate nouns, assuming that the words in

orthographically joined morphemes are joined because they are sufficiently common

to warrant inclusion in the lexicon, and thus do not require dynamic processing.)

2.4.1 Judith N. Levi: The Syntax and Semantics of Complex

Nominals

From page 5 of Levi (1978):

“The principal purpose of this book is the exploration of the syntac-

tic and semantic properties of complex nominals (CNs) in English, and

the elaboration of detailed derivations for these forms within a theory of

generative semantics. The book also represents an attempt to incorporate

into a grammar of English a model of the productive aspects of complex

nominal formation”.

The emphasis is therefore on the formation of NCs. On page 6 Levi claims:

“One of the most important claims of the present work is that all CNs

must be derived by just two syntactic processes: predicate nominalization

17
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and predicate deletion. The analysis of CNs derived by the latter process

will entail the proposal of a set of Recoverably Deletable Predicates (RDPs)

representing the only semantic relations which can underlie CNs. This set

whose members are small in number, specifiable, and probably universal,

consists of these nine predicates: CAUSE, HAVE, MAKE, USE, BE, IN,

FOR, FROM and ABOUT.”

The analysis of nominalization brings out four types of nominalized verbs (AGENT,

PATIENT, PRODUCT and ACT) derived from two types of underlying structures

(Objective and Subjective).

The claims are large: only two syntactic processes and a very small set of universal

relationships. Levi suggests that her principles are likely to reflect linguistic universals

that constrain the use and interpretation of NCs in all human languages. Moreover,

she dismisses ambiguity as being resolved by semantic, lexical and pragmatic clues:

“The fact that a given CN may be derived by the deletion of any of these predicates, or

by the process of nominalization, means that CNs typically exhibit multiple ambiguity.

This ambiguity is, however, reduced to manageable proportions in actual discourse

by semantic, lexical and pragmatic clues”. This could be achievable, in theory, by

automatic systems, but in practice this is very hard to to do (and indeed ambiguity

resolution is a core, unsolved problem of computational linguistics).

2.4.1.1 Derivation of CNs by Predicate Deletion

Levi claims that the variety of semantic relationships between head nouns and prenom-

inal modifiers in NCs is confined within a very limited range of possibilities. A first

derivation of CNs by predicate deletion is proposed to account for the larger part

of these possible semantic relationships for those NCs whose two elements are de-

rived from the two arguments of an underlying predicate, as in apple pie or malarial

18
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mosquitoes. This small set of specifiable predicates that are recoverably deletable in

the process of CN formation is made up of nine predicates. These predicates, and

only these predicates, may be deleted in the process of transforming an underlying

relative clause construction into the typically ambiguous surface configuration of the

CN.

The NCs derived by predicate deletion are derived by a sequence of transforma-

tion in which a predicate was deleted to form a NC: for example, for viral infection

(CAUSE) we have the following set of transformations:

virus causes infection

infection is caused by virus

infection is virus-caused

infection virus-caused

virus-caused infection

viral infection

Similarly, marginal note was derived by note in margin. Examples of CNs derived

by deletion of these nine predicates are given in Table 2.2.

2.4.1.2 Derivation of CNs by Predicate Nominalization

The second major group is composed of CNs whose head noun is a nominalized verb,

and whose prenominal modifier is derived from either the underlying subject or the

underlying direct object of this verb.

Levi classifies the CNs first according to categories determined by the head noun,

and second according to categories determined by the prenominal modifier. For the

first case, Levi proposes four nominalization types: Act Nominalizations (parental

refusal, birth control), Product Nominalizations (musical critiques, royal orders),
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RDP N1 is direct object N1 is subject
of relative clause of relative clause

CAUSE CAUSE1 CAUSE2
(causative) tear gas drug death

disease germ birth pains
malarial mosquitoes nicotine fit
traumatic event viral infection

MAKE MAKE1 MAKE2
(productive, honeybee daisy chains
compositional) silkworm snowball

musical clock consonantal patterns
sebaceous glands molecular chains

HAVE HAVE 1 HAVE 2
(possessive, picture book government land
dative) apple cake lemon peel

gunboat student power
musical comedy reptilian scales

USE voice vote
(instrumental) steam iron

manual labor
solar generator

BE soldier ant
(essive, target structure
appositional) professorial friends

mammalian vertebrates
IN field mouse
(locative-spatial morning prayers
or temporal) marine life

marital sex
FOR horse doctor
(purposive, arms budget
benefactive) avian sanctuary

aldermanic salaries
FROM olive oil
(source, test-tube baby
ablative) apple seed

rural visitors
ABOUT linguistic lecture
(topic) tax law

price war
abortion vote

Table 2.2: Levi’s classes of NCs derived by deletion of predicates. RDP stands for Re-
coverably Deletable Predicate. In parenthesis, more traditional terms for the relationships
expressed by the RDPs.
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Agent Nominalizations (city planner, film cutter) and Patient Nominalizations

(student inventions, mammalian secretions).

Act Nominalizations can be paraphrased by “the act of (parents refusing)” while

Product Nominalizations seem to represent some object (usually though not always

tangible) that is produced as the result of a specific action or event (outcome) and

can be paraphrased by “that which is produced by the act of (criticizing music).”

To clarify the distinction between Product Nominalizations and Patient Nominaliza-

tions, Levi presents the following examples, in which (a) are products and (b) patients:

(a) The managerial appointments infuriated the sales staff.

(b) The managerial appointees infuriated the sales staff.

(a) We expect to receive the senatorial nominations shortly.

(b) We expect to receive the senatorial nominees shortly.

CNs whose head nouns are derived by nominalization (NOM CNs) may also be

classified according to the syntactic source of their prenominal modifier(s). In this

way the data may be divided into two major categories: Subjective NOM CNs,

whose prenominal modifier derives from the underlying subject of the nominalized

verb and Objective NOM CNs, whose prenominal modifier derives instead from

that verb’s underlying direct object (see Table 2.3). This classification is based on

the meaning and source of the head noun alone and on the syntactic source of their

prenominal modifier; it does not depend on the semantic relationships between the

two nouns.

2.4.1.3 Exclusion of the preposition “OF”

I was surprised by Levi’s exclusion of the preposition “OF” from the set of recoverably

deletable predicates, especially because this rule seemed to be the reason I was unable
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SUBJECTIVE NOM CNs OBJECTIVE NOM CNs
Act parental refusal birth control

manager attempt heart massage
scell decomposition subject deletion
judicial betrayal musical criticism

Product clerical error oceanic studies
peer judgments chromatic analyses
faculty decisions stage designs
papal appeals tuition subsidies

Agent - draft dodger
urban planner
acoustic amplifier
electrical conductor

Patient royal gifts -
student inventions
presidential appointees
city employees

Table 2.3: Levi’s classes of NCs derived by nominalizations. The modifier derives from
the underlying subject or object of the nominalized verb.

to classify about 250 of my NCs. On page 97, Levi (1978) lists some examples of CNs

derived by FOR deletion (bird sanctuary from sanctuary FOR birds, nose drops from

drops FOR nose) and on page 95, examples of CNs derived by IN deletion (office

friendships from friendships IN the office, marginal note from note IN the margin).

It’s not clear to me why she excludes CNs derived by OF deletion: headache activity

from activity OF headache, brain function from function OF the brain, cell growth

from growth OF the cell. On page 161, she discusses the membership requirements

for the RDP set but she mainly defends her choice for the nine predicates rather than

explaining the reasons for the exclusion of others (she never explicitly mentions the

preposition “of”).

Levi claims that the predicates she proposes “seem to embody some of the most

rock-bottom-basic semantic relationships expressible in human language; assuming

that there are such things as semantic primes, these nine are surely outstanding candi-
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dates.” Levi goes on saying that all the nine predicates manifest “surface invisibility”

and “grammaticality.” She defines “surface invisibility” as a characterization of those

predicate “that can be either deleted or incorporated before they reach the surface

without leaving a surface trace.” So for example the sign employees only means FOR

employees only, Adar is as talented as Ariella means Adar is as talented as Ariella IS

TALENTED and Max wants a lollipop means Max wants (TO HAVE) a lollipop.

One example comes to mind regarding the proposition “of”: in a medical labo-

ratory with plates containing biopsies, a label bowel would mean biopsy OF bowel,

and the label brain would stand for biopsy OF brain. The notion of grammaticality

means that these predicates “are often expressed not by independent lexical items but

by bound grammatical morphemes.” For example, some predicates in the RDP set

are grammatized into marking of nouns, i.e., into case endings. For example, in the

Proto-Indo-European system, CAUSE and FROM act as ablative, FOR as dative,

USE as instrumental, IN as locative, MAKE as accusative, BE as nominative and

HAVE as possessive genitive. It is important to note that in Levi (1978) the genitive

case has been described only as possessive genitive that can indeed be paraphrased

by HAVE.6 I argue, however, the genitive is not used only to show possession but

can also be indefinite, objective, partitive, descriptive in which cases the preposition

is OF. For example:7

• genitive as charge: He is guilty of murder

• genitive as indefinite: A box of [some] weight

• genitive as description: He was a man of no character

• genitive as material: A statue made of silver

6And this was in fact the case for the classes “Characteristic of,” “Physical property,” “Defect”
for which both HAVE2 and OF are good descriptions

7From Latin Dictionary and Grammar Aid: http://www.nd.edu/ archives/gen.htm
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• genitive as objective: He had no fear of death

• genitive as partitive: One out of a million

Thus I would think of bowel biopsy and acetaminophen overdose as objective gen-

itives and of asthma mortality as a description genitive.

For these reasons, I argue that the exclusion of “OF” is not well motivated.

2.4.1.4 Problems with Levi’s classification system

In this section I show how Levi’s classification system is not appropriate for the

classification of my collection of NCs in the biomedical domain. (See Section 2.6.2

and Table 2.1 for a more detailed description of my classification.)

There are two main reasons why Levi’s classification is inappropriate: 1) for many

of the NCs in my collection there is no appropriate class under Levi’s schema and 2)

there is a many-to-many mapping between Levi’s and my classification: NCs with the

same semantic relation belong to different classes under Levi’s classification and the

same class under Levi’s schema correspond to several classes of my schema. In other

words, in certain cases, Levi’s classification does not have the specificity required for

the NCs of my collection, in others, it is instead too specific.

Table 2.4 shows the mapping from Levi’s schema to mine, and below I expand on

these concerns.

• No corresponding class in Levi’s classification

– Lexicalized NCs.

My collection of NCs includes many non-compositional or lexicalized NCs,

such as vitamin k and e2 protein. As lexicalized NCs do not represent regu-

lar grammatical process and must be learned on an item-by-item basis, Levi
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does not include them in her analysis. Her study is restricted to endocen-

tric complex nominals and does not consider, for example, metaphorical,

lexicalized or idiomatic meanings.8

– Exclusion of “OF.” Levi’s system does not have an appropriate class for

many NCs such as tissue atropy (“Change”), artery diameter (“Physical

property”), headache period, influenza season (“Time of”), asthma mor-

tality, abortion rate (“Measure of”), cell apoptosis, infant death. I argue

that these NCs could be be described well by the (deleted) proposition

“OF” that Levi does not include, as described in the previous section.

• Multiple Levi classes for a single semantic relation: many-to-one map-

ping

For these cases, the main difference between my classification and Levi’s is that

my classification does not depend on whether or not nouns are derived from

a verb by nominalization; only the semantic relationship between the nouns is

taken into account.

In my classification schema, the NCs anti-migraine drugs, flu vaccine, asthma

therapy, influenza vaccination, asthma treatment, tumor treatment all fall un-

der the “Purpose” semantic class. Under Levi’s system, anti-migraine drugs,

flu vaccine, asthma therapy, influenza vaccination would be “RDP, for” but

asthma treatment, tumor treatment would be “NOM, Objective Act,” since the

noun treatment is derived by the verb treat by nominalization. Similarly, in

8Chapter 7 of Levi (1978) deals with exception classes, i.e., types of NCs that are exceptions to her
theory and therefore not included, for example, CNs whose modifiers denote units of measure, and
CNs whose adjectival modifiers must be derived from adverbs rather than nouns. Other examples
whose meanings (and hence, derivations) her theory does not predict are: cat/morning/tennis person,
volleyball/poetry freak, lunar/solar/fiscal/academic year, vodka/shopping binge, lunar/solar/fiscal
academic year, dental/medical appointment, iron/bronze/industrial age, diamond/textile heir.
Her claim is that these NCs are formed not by the syntactic processes of predicate deletion or
predicate nominalization but rather by a morphological process equivalent to suffixation.
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my view all the following NCs contain an “Instrument” kind of relation: injec-

tion method, laser surgeries, aciclovir therapy, vibration massage, lamivudine

therapy, chloroquine treatment, ginseng treatment, laser treatment but following

Levi’s schema they would be divided into two classes: “RDP, use” (injection

method, laser surgeries, aciclovir therapy, vibration massage, lamivudine ther-

apy) and “NOM, Subjective Act” (chloroquine treatment, ginseng treatment,

laser treatment).

• Single Levi’s class corresponding to several semantic relations: one-

to-many mapping

Most of Levi’s classes correspond to several different categories in my classifi-

cation schema. For example “Demographic attributes,” “Located in,” “Is part

of” and “Time of” all correspond to “RDP, IN.” This is due to the fact that

the purposes of the two classification schemas are very different; Levi justifies

this vagueness on three major grounds (as she writes on page 82) as follows:

“First, the identification of the RDP set which they constitute

allows us to make highly accurate predictions about which semantic

structures can underlie CNs and which can not; second, the specifica-

tion of general predicates serves to include a number of more specific

relations that might otherwise have to be enumerated individually with

a concomitant loss of generality; third, this analysis creates no more

confusion or vagueness than is observable in periphrastic equivalents

with overt lexicalizations of the RDPs (e.g., x has y, x is in y, x is for

y), where some fundamental distinctions are made but where a great

deal is typically left unspecified.”

She lists some of the possible more specific relationships for IN: inhabits, grow-
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in, according-to, during, found-in and occur-in. She claims that:

“The positing of six or more separate groups, however, would ob-

scure the generalization that is captured in the present theory by posit-

ing a single predicate IN for both spatial and temporal, both concrete

and abstract location. [...] we must recognize that (a) it cannot be

accidental that all of these paraphrases must in any case include the

locative preposition IN, and (b) the more specific verbs are wholly

predictable on the basis of the semantic characteristics of the surface

components of the CN. For example, almost any CN whose head noun

denotes an animate creature and whose modifier is a place noun will

be a suitable member for the INHABIT group. [...] Since, however,

these differences not only are predictable on independent grounds but

also seem to have no effect whatsoever on the formation of the corre-

sponding CNs, our description need not include this of specificity.”

The important point is that the purpose of her work is the formation of CNs,

while mine is their automatic classification. Under Levi’s system, in order to

predict the specific relationships on the basis of the semantics of the nouns, I

would need to define the specific readings and add rules such as:

– IF the relationship is IN

– IF the first noun belongs to the class A and the second noun to the class

B

– Then: IN means INHABITS

Rules such as these are brittle and difficult to construct and require the iden-

tification of the semantic classes A and B, as well as finding a way to assign
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each noun to the corresponding semantic class. For my purposes, an approach

in which NCs are directly mapped to more specific categories is preferable.

One might ask why I consider Levi’s work if its goals are so different from mine.

The reason is that I wanted to analyze an important linguistic theory on this subject,

and, as already mentioned, most of the research in computational linguistics for the

analysis of NCs cite this work. More importantly, some of them justify their classi-

fication schemas as based on Levi’s (see, e.g., Vanderwende, 1994). However, based

on the analysis above, I argue that despite this precedence, a different classification

schema is needed for my task.

2.4.2 Beatrice Warren: Semantic Patterns of Noun-Noun Com-

pounds

Warren’s theory (Warren, 1978) is far less constraining than Levi’s. Her purpose was

to determine whether there exists a limited number of semantic relations between

the constituents of NCs, and to determine the nature of these relations. Warren

(1978) is primarily a report of the results of an empirical investigation; this work is

a comprehensive study of 4557 manually extracted compound nouns from the Brown

corpus.9 Warren developed a taxonomy of implicit semantic relations, with four

hierarchical levels of abstraction.

According to Warren (1978), there are six major types of semantic relations that

can be expressed in compounds (in the following definitions A and B indicate, respec-

tively, the first and the second noun):

• Constitute: A is something that wholly constitutes B, or vice versa: this

class is divided into Source-Result, Result-Source and Copula classes. Some

9In particular, her collection comes from “The standard Corpus of Present-Day Edited American
English” assembled at Brown University during 1963 and 1964.
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Levi’s classification My classification
CAUSE1 Cause 1-2
CAUSE2 Cause 2-1
MAKE1 Produce
MAKE2 Physical make up
HAVE1 Person afflicted

Location
Material

HAVE2 Characteristic
Physical property
Defect

USE Instrument 1-2
BE Subtype

Modal
IN Demographic attributes

Location
Time of 1-2

FOR Purpose
Person/center who treats
Instrument 2-1
Bind
Activator 2-1

FROM Material
ABOUT Research on

Attribute of clinical study
Procedure
Topic
Standard
Misuse

NOM: Subjective Act Activity/physical process
Change
Instrument 1-2
Subject

NOM: Subjective Product Ending/reduction
Activator 1-2

NOM: Subjective Patient -
NOM: Objective Act Purpose

Misuse
Object

NOM: Objective Product -
NOM: Objective Agent Activator 2-1

Inhibitor

Table 2.4: For each of the Levi’s classes, the semantic relations of Section 2.3 that
correspond to them. Note that very different semantic relations fall under the same class
under Levi’schema.
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examples: metal coupon, paste wax, student group.

• Possession if A is something of which B is a part or a feature or vice versa;

divided into Part-Whole, Whole-Part and Size-Whole classes. Examples: board

member, apple pie.

• Location: A is the location or origin of B in time or space. Participant roles

are Place-OBJ, Time-OBJ, Origin-OBJ. Examples: coast road, Sunday school,

seafood.

• Purpose: A indicates the “purpose” of B. Participant roles: Goal-Instrumental.

Examples: pie tin, tablecloth.

• Activity-Actor: A indicates the activity or interest with which B is habitually

concerned (cowboy, fire department).

• Resemblance: A indicates something that B resembles. Participant roles:

Comparant-Compared. Examples: egghead, bullet head.

The semantic relations can often be paraphrased (although paraphrasing does not

work with idiomatization.) In Table 2.5 are shown the major classes and subclasses,

the paraphrases, and some examples of Warren’s classification of noun compounds.

These classes are further subdivided into a hierarchical organization. I do not

describe the classes in detail (there is a whole chapter for each class in Warren, 1978)

but in Figures 2.1, 2.2, 2.3 and 2.4 one can see Warren’s semantic relations further

subdivided into several levels of sub-classes.

2.4.2.1 Is Warren’s classification system appropriate?

There is a fairly good correspondence between my relations and Warren’s. For exam-

ple, my “Cause (2-1)” for flu virus corresponds to her “Causer-Result” of hay fever,
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MAJOR CLASS SUB CLASSES PARAP. EXAMPLES

Contitute Source-Result OF metal sheet
Result-Source IN sheet metal

Copula - girl friend
Possession Part-Whole OF eggshell

Whole-Part WITH armchair
Location Place-OBJ IN, AT, ON coast road

Time-OBJ IN, AT, ON Sunday school
Origin-OBJ FROM seafood

Purpose Goal-Instrumental FOR pie tin
Activity-Actor Activity-Obj - cowboy
Resemblance Comparant-Compared LIKE cherry bomb

Table 2.5: Warren semantic relations for NCs

Figure 2.1: Warren’s Constitute semantic relation (Warren, 1978).
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Figure 2.2: Warren’s Possession semantic relation (Warren, 1978).

Figure 2.3: Warren’s Location semantic relation (Warren, 1978).
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Figure 2.4: Warren’s Purpose and Activity-actor semantic relations (Warren, 1978).

my “Topic” (health education) to her “Subject-Matter-Whole” (detective story) and

my “Person Afflicted” (migraine patient) can be thought as Warren’s “Belonging-

Possessor” of gunman.

Warren’s investigation is empirical, and it may well be that some relations that I

found in my collection never occurred in hers. For example, I was not able to find an

appropriate relation in Warren’s schema for heroin use, internet use, drug utilization

that I classified as “Instrument 1.” Perhaps the closest class is “Material-artifact” of

clay bird, brass wire except that use, utilization are not “artifacts.” Also, I was not

able to classify under Warren’s schema NCs for “Misuse” (drug abuse, acetaminophen

overdose), “Binds” (receptor ligand), “Activator 2-1” (headache trigger), “Inhibitor”

(receptor blockers), but again these NCs are very domain specific.

More importantly, many of the NCs for which I could not find a corresponding

relation in Warren’s schema are nominalizations (NCs in which one noun is dever-

bal) that Warren does not include; some examples are: tissue reinforcement, tumor

development, ventricle enlargement (“Change”), migraine relief, headache decrease

(“Ending/reduction”), kidney transplant, liver transplantation (“Object”).

Warren’s motivation for excluding nominalizations is that a main goal of her work
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is to determine which semantic relations between two nouns can be left unexpressed, or

which verbs connecting the two nouns may be discarded. In a compound containing

a deverbal noun there is no verb deleted and the type of semantic relation that

exists between the constituents is explicit, while this relation is implicit in non-verbal

compounds. An important consequence of this distinction is that nominalizations do

NOT appear to be restricted as to the type of relations that may exists between the

constituents. Indeed, there is no need for such a restriction since the type of relation

between the nouns is explicitly indicated by the deverbal noun. In contrast, there are

a limited number of relations that are left unexpressed for non-verbal NCs.

I argue that Warren’s motivation for excluding nominalizations is not appropriate

for the problem tackled here – the automatic classification of NCs into semantic

classes. In theory, we could first divide NCs into verbal and non-verbal (with a binary

classification system perhaps) and then analyze the two classes separately. This would

make the system more complicated, but it would be useful if the number of possible

types of relations in verbal NCs is indeed unconstrained and explicit and if we knew

how to infer the relation given the verb (which is another problem in it’s own right).10

Moreover, we would still want to infer the same relation for headache transformation

(verbal) and tissue atrophy (non-verbal), for example. Warren acknowledges this fact

and notes that her distinction would bring her to include sugar bowl while excluding

sugar container as a verbal combination in spite of the fact that the two NCs express

the same semantic relationship.

Warren’s classification is very detailed and her definition of subclasses is well-

aligned with my tasks. However, the organization of her classes sometimes does not

reflect the similarities of the underlying relations.

As an example, 3-day affair and 75-minute concert are “Duration-whole” in the

10Lapata (2000) proposes algorithms for the classification of nominalizations according to whether
the modifier is the subject or the object of the underlying verb expressed by the head noun.
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“Possession” class because the comment indicates the duration of the topic, while

morning concert and Sunday paper are “Time-Object” in “Location” because com-

ment indicates when the topic takes place; these NCs end up in two entirely different

semantic classes, obscuring therefore the similarity of the semantic relations. Simi-

larly, “Belonging-Possessor” (gunman) and “Possessor-Belonging” (family estate) are

opposite classes within the “Possession” major class (see Figure 2.2, in both cases

there is a “own” relationship, but in gunman the topic owns the comment while

in family estate it’s the comment that owns the topic). “Belonging-Possessor” is

sub-class of “Part-Whole” while “Possessor-Belonging” is sub-class of “Whole-Part.”

While this is logical, it results in two classes that are natural opposites of each other

being “located” in two positions in the hierarchy that are far apart. Just by looking

at the hierarchy it is not immediately evident that these two classes are so closely

related.

If we do not use the hierarchy but instead use only the classes in their own this

concern can be ignored. However, if we do want to take advantage of the hierarchical

structure, the fact that similar concepts like 3-day affair are a “Possession” while

weekend affair is a “Location” could be problematic.

Warren differentiates some classes on the basis of the semantics of the constituents,

so that, for example, the “Time” relationship is divided up into “Time-Animate En-

tity” of weekend guests and “Time-Inanimate Entity” of Sunday paper. By contrast,

my classification is based on the kind of relationships that hold between the con-

stituent nouns rather than on the semantics of the head nouns.

To summarize this section, the problem of determining what the appropriate se-

mantic relations are is a complex one. A detailed review of the linguistic literature

did not suggest a set of relations appropriate for my collection of NCs. The empirical

analysis I performed on my collection has a similar goal to that of Warren (1978) and

the semantic patterns I identified do correspond, to some extent, to those of Warren

35



Chapter 2. Noun Compounds

(1978). The different characteristics of the two collections, however, require different

relations and it may be the case that this is true in general, that is, new sets of

semantic relations may be needed for each domain. Moreover, the intended use of

these semantic relations may also affect their choice.

2.5 Related work

Several approaches have been proposed for empirical noun compound interpretation.

Lauer and Dras (1994) point out that there are three components to the problem:

identification of the compound from within the text, syntactic analysis of the com-

pound (left versus right association), and the interpretation of the underlying seman-

tics. Several researchers have tackled the syntactic analysis (Lauer, 1995a; Puste-

jovsky et al., 1993; Liberman and Church, 1992), usually using a variation of the idea

of finding the subconstituents elsewhere in the corpus and using those to predict how

the larger compounds are structured.

2.5.1 Noun Compound Relation Assignment

Most related work on the interpretation of the semantics relies on hand-written rules

of one kind or another. Finin (1980) examines the problem of noun compound inter-

pretation in detail, and constructs a complex set of rules. Vanderwende (1994) uses

a sophisticated system to extract semantic information automatically from an on-

line dictionary, and then manipulates a set of hand-written rules with hand-assigned

weights to create an interpretation. Rindflesch et al. (2000b) use hand-coded rule

based systems to extract the factual assertions from biomedical text.

Lapata (2000) classifies nominalizations according to whether the modifier is the

subject or the object of the underlying verb expressed by the head noun (see Section
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2.4.1 for a discussion about nominalizations.) She reports an accuracy of 80% for the

easier problem of binary classification.

Barker and Szpakowicz (1998) describe noun compounds as triplets of information:

the first constituent, the second constituent, and a marker that can indicate a number

of syntactic clues. Relations are initially assigned by hand, and then new ones are

classified based on their similarity to previously classified NCs. However, similarity at

the lexical level means only that the same word occurs; no generalization over lexical

items is made. The algorithm is assessed in terms of how much it speeds up the hand-

labeling of relations. Barrett et al. (2001) have a somewhat similar approach, using

WordNet and creating heuristics about how to classify a new NC given its similarity

to one that has already been seen.

2.5.2 Using Lexical Hierarchies

Many approaches attempt to automatically assign semantic roles (such as case roles)

by computing semantic similarity measures across a large lexical hierarchy; primarily

using WordNet (Fellbaum, 1998). Budanitsky and Hirst (2001) provide a comparative

analysis of such algorithms.

However, it is uncommon to simply use the hierarchy directly for generalization

purposes. Many researchers have noted that WordNet’s words are classified into

senses that are too fine-grained for standard NLP tasks. For example, Buitelaar

(1997) notes that the noun book is assigned to seven different senses, including fact

and section, subdivision. Thus most users of WordNet must contend with the sense

disambiguation issue in order to use the lexicon.

There have been several efforts to incorporate lexical hierarchies for the prob-

lem of prepositional phrase (PP) attachment. The current standard formulation is:

given a verb followed by a noun and a prepositional phrase, represented by the tuple
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v, n1, p, n2, determine which of v or n1 the PP consisting of p and n2 attaches to, or

is most closely associated with. As an example, consider the following minimal pair:

(i) eat spaghetti with a fork

(ii) eat spaghetti with sauce

In the PP attachment problem, one has to determine which is a more likely asso-

ciation: fork and eat, or fork and spaghetti.

Because the data is sparse, empirical methods that train on word occurrences

alone have been supplanted by algorithms that generalize one or both of the nouns

according to class-membership measures (Resnik, 1993; Resnik and Hearst, 1993;

Brill and Resnik, 1994; Li and Abe, 1998), but the statistics are computed for the

particular preposition, verb and noun. Resnik (1993, 1995) uses classes in Wordnet

and a measure of conceptual association to generalize over the nouns. Brill and Resnik

(1994) use Brill’s transformation-based algorithm along with simple counts within a

lexical hierarchy in order to generalize over individual words.

It is not clear how to use the results of such analysis after they are found; the

semantics of the relationship between the terms must still be determined. In my

framework we would cast this problem as finding the relationship R(p, n2) that best

characterizes the preposition and the NP that follows it, and then seeing if the cat-

egorization algorithm determines if there exists any relationship R′(n1, R(p, n2)) or

R′(v, R(p, n2)).

One difficulty with the standard PP attachment problem formulation is that

fork/spaghetti and sauce/eat are both related to each other, but they are related

to each other in two different ways. Instead, I ask the question: what is the relation-

ship between fork and spaghetti and between sauce and spaghetti (contrasting the

noun pairs, as opposed to the verb-noun pairs).
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The most closely related use of a lexical hierarchy that I know of is that of Li and

Abe (1998), which uses an information-theoretic measure to make a cut through the

top levels of the noun portion of WordNet. This is then used to determine acceptable

classes for verb argument structure, as well as for the prepositional phrase attachment

problem.

My approach (described in Section 2.6) differs from these in that I use machine

learning techniques to determine which level of the lexical hierarchy is appropriate

for generalizing across nouns.

2.6 Classifying the semantic relations

In the previous sections I introduced my collection of NCs, the semantic relations

that I identified, and some of the linguistic theories for this domain. In this section,

I present my work on the automatic classification of the NCs of my collection using

a neural net approach (Rosario and Hearst, 2001). In the following section I will

describe an alternative method called “descent of hierarchy” (Rosario et al., 2002)

that does not make use of machine learning.

I have found that I can use a standard machine learning classification technique to

classify relationships between two-word noun compounds with a surprising degree of

accuracy. A one-out-of-eighteen classification using a neural net achieves accuracies

as high as 62%; this result can be compared with the baseline accuracies of 5% of

chance and 30% obtained with logistic regression. By taking advantage of lexical

ontologies, I achieve strong results on noun compounds for which neither word is

present in the training set. Thus, I think this approach is promising for a variety of

semantic labeling tasks.

Section 2.6.1 describes the ontologies used; in Section 2.6.2 I describe the method

for automatically assigning semantic relations to noun compounds, and report the
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results of experiments using this method; finally Section 2.6.3 discusses this work.

2.6.1 Lexical Resources

The Unified Medical Language System (UMLS) is a biomedical lexical resource pro-

duced and maintained by the National Library of Medicine (Humphreys et al., 1998).

I use the MetaThesaurus component to map lexical items into unique concept IDs

(CUIs).11 The UMLS also has a mapping from these CUIs into the MeSH lexical

hierarchy; I mapped the CUIs into MeSH terms.

MeSH (Medical Subject Headings)12 is the National Library of Medicine’s con-

trolled vocabulary thesaurus; it consists of set of main terms (as well as additional

modifiers) arranged in a hierarchical structure. There are 15 main sub-hierarchies

(trees) in MeSH, each corresponding to a major branch of medical terminology. For

example, tree A corresponds to Anatomy, tree B to Organisms, tree C to Diseases

and so on. Every branch has several sub-branches; Anatomy, for example, consists of

Body Regions (A01), Musculoskeletal System (A02), Digestive System (A03) etc. I

refer to these as “Model 1” or “level 1” categories.

These nodes have children, for example, Abdomen (A01.047) and Back (A01.176)

are level 2 children of Body Regions. The longer the ID of the MeSH term, the longer

the path from the root and the more precise the description. For example migraine

is C10.228.140.546.800.525, that is, C (a disease), C10 (Nervous System Diseases),

C10.228 (Central Nervous System Diseases) and so on. There are over 35,000 unique

IDs in MeSH 2001. Many words are assigned more than one MeSH ID and so occur

in more than one location within the hierarchy; thus the structure of MeSH can be

interpreted as a network.

11In some cases a word maps to more than one CUI; for the work reported here I arbitrarily chose
the first mapping in all cases.

12 http://www.nlm.nih.gov/mesh/meshhome.html. The work reported in this paper uses
MeSH 2001.
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I use the MeSH hierarchy for generalization across classes of nouns; I use it instead

of the other resources in the UMLS primarily because of MeSH’s hierarchical struc-

ture. For these experiments, we considered only those noun compounds for which

both nouns can be mapped into MeSH terms, resulting in a total of 2245 NCs.

2.6.2 Method and Results

Because I have defined noun compound relation determination as a classification

problem, I can make use of standard classification algorithms; in particular, I used

neural networks.

I ran experiments creating models that used different levels of the MeSH hi-

erarchy. For example, for the NC flu vaccination, flu maps to the MeSH term

D4.808.54.79.429.154.349 and vaccination to G3.770.670.310.890. Flu vaccination for

Model 4 would be represented by a vector consisting of the concatenation of the two

descriptors showing only the first four levels: D4.808.54.79 G3.770.670.310 (see Table

2.6). When a word maps to a general MeSH term (like treatment, Y11) zeros are

appended to the end of the descriptor to stand in place of the missing values (so, for

example, treatment in Model 3 is Y 11 0, and in Model 4 is Y 11 0 0, etc.).

The numbers in the MeSH descriptors are categorical values; I represented them

with indicator variables. That is, for each variable I calculated the number of possible

categories c and then represented an observation of the variable as a sequence of c

binary variables in which one binary variable was one and the remaining c− 1 binary

variables were zero.

I also used a representation in which the words themselves were used as categorical

input variables (I call this representation “lexical”). For this collection of NCs there

were 1184 unique nouns and therefore the feature vector for each noun had 1184

components. In Table 2.7 I report the length of the feature vectors for one noun for
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flu vaccination
Model 2 D 4 G 3
Model 3 D 4 808 G 3 770
Model 4 D 4 808 54 G 3 770
Model 5 D 4 808 54 79 G 3 770 670
Model 6 D 4 808 54 79 429 G 3 770 670 310

Table 2.6: Different lengths of the MeSH descriptors for the different models

Model Feature Vector
2 42
3 315
4 687
5 950
6 1111
Lexical 1184

Table 2.7: Length of the feature vectors for different models.

each model. The entire NC was described by concatenating the feature vectors for

the two nouns in sequence.

The NCs represented in this fashion were used as input to a neural network. I

used a feed-forward network trained with conjugate gradient descent. The network

had one hidden layer, in which a hyperbolic tangent function was used, and an output

layer representing the 18 relations (in bold in Table 2.1). A logistic sigmoid function

was used in the output layer to map the outputs into the interval (0, 1).

The number of units of the output layer was the number of relations (18) and

therefore fixed. The network was trained for several choices of numbers of hidden

units; I chose the best-performing networks based on training set error for each of the

models. I subsequently tested these networks on held-out testing data.

I compared the results with a baseline in which logistic regression was used on

the lexical features. Given the indicator variable representation of these features, this
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logistic regression essentially forms a table of log-odds for each lexical item. I also

compared to a method in which the lexical indicator variables were used as input

to a neural network. This approach is of interest to see to what extent, if any, the

MeSH-based features affect performance. Note also that this lexical neural-network

approach is feasible in this setting because the number of unique words is limited

(1184) – such an approach would not scale to larger problems.

Multi-class classification is a difficult problem (Vapnik, 1998). In this problem, a

baseline in which the algorithm guesses yields about 5% accuracy. In Table 2.8 and

in Figure 2.5 I report the results from these experiments. These results show that

my method is a significant improvement over the tabular logistic-regression-based

approach, which yields an accuracy of only 31 percent. Additionally, despite the

significant reduction in raw information content as compared to the lexical represen-

tation, the MeSH-based neural network performs as well as the lexical-based neural

network. (And I again stress that the lexical-based neural network is not a viable

option for larger domains.) The neural network using only lexical features yields 62%

accuracy on average across all 18 relations. A neural net trained on Model 6 using the

MeSH terms to represent the nouns yields an accuracy of 61% on average across all

18 relations. Note that reasonable performance is also obtained for Model 2, which is

a much more general representation. Table 2.8 shows that both methods achieve up

to 78% accuracy at including the correct relation among the top three hypothesized.

Figure 2.6 shows the results for each relation. MeSH-based generalization does

better on some relations (for example 14 and 15) and Lexical on others (7, 22).

It turns out that the test set for relationship 7 (“Produces on a genetic level”) is

dominated by NCs containing the words alleles and mrna and that all the NCs in the

training set containing these words are assigned relation label 7. A similar situation

is seen for relation 22, “Time(2-1).” In the test set examples the second noun is either

recurrence, season or time. In the training set, these nouns appear only in NCs that
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Figure 2.5: Accuracies on the test sets for all the models. The dotted line at the bottom
is the accuracy of guessing (the inverse of the number of classes). The dash-dot line
above this is the accuracy of logistic regression on the lexical data. The solid line with
asterisks is the accuracy of my representation, when only the maximum output value from
the network is considered. The solid line with circles if the accuracy of getting the right
answer within the two largest output values from the neural network and the last solid
line with the plus signs is the accuracy of getting the right answer within the first three
outputs from the network. The three flat dashed lines are the corresponding performances
of the neural network on lexical inputs.
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Model Acc1 Acc2 Acc3
Lexical: Log Reg 0.31 0.58 0.62

Lexical: NN 0.62 0.73 0.78
2 0.52 0.65 0.72
3 0.58 0.70 0.76
4 0.60 0.70 0.76
5 0.60 0.72 0.78
6 0.61 0.71 0.76

Table 2.8: Test accuracy for each model, where the model number corresponds to the
level of the MeSH hierarchy used for classification. Lexical NN is Neural Network on
Lexical and Lexical: Log Reg is Logistic Regression on NN. Acc1 refers to how often the
correct relation is the top-scoring relation, Acc2 refers to how often the correct relation is
one of the top two according to the neural net, and so on. Uniform guessing would yield
a result of 0.077.

Figure 2.6: Accuracies for each class. The numbers at the bottom refer to the class
numbers in Table 2.1. Note the very high accuracy for the “mixed” relationship 20-27
(last bar on the right).
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have been labeled as belonging to relation 22.

On the other hand, looking at relations 14 and 15, there is a wider range of words,

and in some cases the words in the test set are not present in the training set. In

relationship 14 (“Purpose”), for example, vaccine appears 6 times in the test set (e.g.,

varicella vaccine). In the training set, NCs with vaccine in it have also been classified

as “Instrument” (antigen vaccine, polysaccharide vaccine), as “Object” (vaccine de-

velopment), as “Subtype of” (opv vaccine) and as “Wrong” (vaccines using). Other

words in the test set for 14 are varicella which is present in the training set only in

varicella serology labeled as “Attribute of clinical study,” drainage which is in the

training set only as “Location” (gallbladder drainage and tract drainage) and “Ac-

tivity” (bile drainage). Other test set words such as immunisation and carcinogen do

not appear in the training set at all.

In other words, it seems that the MeSH-based categorization does better when

generalization is required. Additionally, this data set is “dense” in the sense that

very few testing words are not present in the training data. The results reported in

Table 2.8 and in Figure 2.5 were obtained splitting the data into 50% training and

50% testing for each relation with a total of 855 training points and 805 test points.

Of these, only 75 examples in the testing set consisted of NCs in which both words

were not present in the training set.

This is of course an unrealistic situation and so I tested the robustness of the

method in a more realistic setting. I was also interested in seeing the relative impor-

tance of the first versus the second noun. Therefore, I split the data into 5% training

(73 data points) and 95% testing (1587 data points) and partitioned the testing set

into 4 subsets as follows (the numbers in parentheses are the number of points for

each case):

• Case 1: NCs for which the first noun was not present in the training set (424)
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Model All test Case 1 Case 2 Case 3 Case 4
Lexical: NN 0.23 0.54 0.14 0.33 0.08

2 0.44 0.62 0.25 0.53 0.38
3 0.41 0.62 0.18 0.47 0.35
4 0.42 0.58 0.26 0.39 0.38
5 0.46 0.64 0.28 0.54 0.40
6 0.44 0.64 0.25 0.50 0.39

Table 2.9: Test accuracy for the four sub-partitions of the test set.

• Case 2: NCs for which the second noun was not present in the training set (252)

• Case 3: NCs for which both nouns were present in the training set (101)

• Case 4: NCs for which both nouns were not present in the training set (810).

Table 2.9 and Figures 2.7 and 2.8 present the accuracies for these test set parti-

tions. Figure 2.7 shows that the MeSH-based models are more robust than the lexical

when the number of unseen words is high and when the size of training set is (very)

small. In this more realistic situation, the MeSH models are able to generalize over

previously unseen words. For unseen words, lexical reduces to guessing.13

Figure 2.8 shows the accuracy for the MeSH based-model for the four cases of

Table 2.9. It is interesting to note that the accuracy for Case 1 (first noun not

present in the training set) is much higher than the accuracy for Case 2 (second noun

not present in the training set). This seems to indicate that the second noun is more

important for the classification that the first one.

2.6.3 Conclusions about the Neural Net Approach

I have presented a simple approach to corpus-based assignment of semantic relations

for noun compounds. The main idea is to define a set of relations that can hold be-

13Note that for unseen words, the baseline lexical-based logistic regression approach, which essen-
tially builds a tabular representation of the log-odds for each class, also reduces to guessing.
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Figure 2.7: Comparing original test set with Case 4 in which none of the nouns in
the test set were present in the training set. The unbroken lines represent the MeSH
models accuracies (for the entire test set and for case 4) and the dashed lines represent
the corresponding lexical accuracies. The accuracies are smaller than the previous case
of Table 2.8 because the training set is much smaller, but the point of interest is the
difference in the performance of MeSH vs. lexical in this more difficult setting. Note that
lexical for case 4 reduces to random guessing.
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Figure 2.8: Accuracy for the MeSH based-model for the four cases. All these curves
refer to the case of getting exactly the right answer. Note the difference in performance
between case 1 (first noun not present in the training set) and case 2 (second noun not
present in training set).
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tween the terms and use standard machine learning techniques and a lexical hierarchy

to generalize from training instances to new examples.

In this task of multi-class classification (with 18 classes) I achieved an accuracy of

about 60%. These results can be compared with Vanderwende (1994) who reports an

accuracy of 52% with 13 classes and Lapata (2000) whose algorithm achieves about

80% accuracy for a much simpler binary classification.

I have shown that a class-based representation performes as well as a lexical-based

model despite the reduction of raw information content and despite a somewhat er-

rorful mapping from terms to concepts. I have also shown that representing the nouns

of the compound by a very general representation (Model 2) achieves a reasonable

performance of about 52% accuracy on average. This is particularly important in the

case of larger collections with a much bigger number of unique words for which the

lexical-based model is not a viable option. Our results seem to indicate that I do not

lose much in terms of accuracy using the more compact MeSH representation.

I have also shown how MeSH-based models outperform a lexical-based approach

when the number of training points is small and when the test set consists of words

unseen in the training data. This indicates that the MeSH models can generalize suc-

cessfully over unseen words. My approach handles “mixed-class” relations naturally.

For the mixed class Defect in Location, the algorithm achieved an accuracy around

95% for both “Defect” and “Location” simultaneously. My results also indicate that

the second noun (the head) is more important in determining the relationships than

the first one.

Future work could include training the algorithm to allow different levels for each

noun in the compound, comparing the results to the tree cut algorithm reported in

Li and Abe (1998), which allows different levels to be identified for different subtrees,

and tackling the problem of noun compounds containing more than two terms.
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2.7 The descent of hierarchy

2.7.1 Introduction

This section describes a second approach for the semantic analysis of NCs (Rosario

et al., 2002).

As seen in the previous sections, interpretation of noun compounds is highly de-

pendent on lexical information. In this section, I explore the use of a large corpus

(MEDLINE) and a large lexical hierarchy (MeSH) for the purpose of placing words

from a noun compound into categories, and then using this category membership to

determine the relation that holds between the nouns. Surprisingly, I find that I can

simply use the juxtaposition of category membership within the lexical hierarchy to

determine the relation that holds between pairs of nouns. For example, for the NCs

leg paresis, skin numbness, and hip pain, the first word of the NC falls into the MeSH

A01 (Body Regions) category, and the second word falls into the C10 (Nervous Sys-

tem Diseases) category. From these I can declare that the relation that holds between

the words is “located in.” Similarly, for influenza patients and aids survivors, the first

word falls under C02 (Virus Diseases) and the second is found in M01.643 (Patients),

yielding the “afflicted by” relation. Using this technique on a subpart of the category

space, I obtain 90% overall accuracy.

In some sense, this is a very old idea, dating back to the early days of semantic nets

and semantic grammars. The critical difference now is that large lexical resources and

corpora have become available, thus allowing some of those old techniques to become

feasible in terms of coverage. However, the success of such an approach depends on

the structure and coverage of the underlying lexical ontology. Since lexical hierarchies

are not necessarily ideally suited for this task, I also pose the question: how far down

the hierarchy must the algorithm descend before all the terms within the subhierarchy
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behave uniformly with respect to the semantic relation in question? I find that the

topmost levels of the hierarchy yield an accurate classification, thus providing an

economic way of assigning relations to noun compounds.

In the following sections, I discuss the linguistic motivations behind this approach,

the characteristics of the lexical ontology MeSH, the use of a corpus to examine the

problem space, the method of determining the relations, the accuracy of the results,

and the problem of ambiguity.

2.7.2 Linguistic Motivation

One way to understand the relations between the words in a two-word noun compound

is to cast the words into a head-modifier relationship, and assume that the head noun

has an argument structure, much the way verbs do, as well as a qualia structure in

the sense of Pustejovsky (Pustejovsky, 1995). Then the meaning of the head noun

determines what kinds of things can be done to it, what it is made of, what it is a

part of, and so on.

For example, consider the noun knife. Knives are created for particular activities

or settings, can be made of various materials, and can be used for cutting or ma-

nipulating various kinds of things. A set of relations for knives, and example NCs

exhibiting these relations is shown below:

kitchen knife, hunting knife: “Used-in”

steel knife, plastic knife: “Made-of”

carving knife: “Instrument-for”

meat knife, putty knife: “Used-on”

chef ’s knife, butcher’s knife: “Used-by”

Some relationships apply to only certain classes of nouns; the semantic structure of

the head noun determines the range of possibilities. Thus if we can capture regularities

about the behaviors of the constituent nouns, we should also be able to predict which
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relations will hold between them.

I propose using the categorization provided by a lexical hierarchy for this purpose.

Using a large collection of noun compounds, I assign semantic descriptors from the

lexical hierarchy to the constituent nouns and determine the relations between them.

This approach avoids the need to enumerate in advance all of the relations that may

hold. Rather, the corpus determines which relations occur.

2.7.3 The Lexical Hierarchy: MeSH

As mentioned in Section 2.6.1, MeSH (Medical Subject Headings) is the National

Library of Medicine’s controlled vocabulary thesaurus; it consists of terms arranged

in a hierarchical structure. There are 15 main sub-hierarchies in MeSH, for example,

tree A corresponds to Anatomy, tree B to Organisms, tree C to Diseases and so on.

(See Section 2.6.1 for a more detailed description of MeSH.)

Some of the MeSH sub-hierarchies are more homogeneous than others. The tree

A (Anatomy) for example, seems to be quite homogeneous; at level 1, the nodes are

all part of (meronymic to) Anatomy: the Digestive (A03), Respiratory (A04) and

the Urogenital (A05) Systems are all part of anatomy; at level 2, the Biliary Tract

(A03.159) and the Esophagus (A03.365) are part of the Digestive System (level 1)

and so on. Thus I assume that every node is a (body) part of the parent node (and

all the nodes above it). Tree C for Diseases is also homogeneous; the child nodes are

a kind of (hyponym of) the disease at the parent node: Neoplasms (C04) is a kind of

Disease C and Hamartoma (C04.445) is a kind of Neoplasms.

Other trees are more heterogeneous, in the sense that the meanings among the

nodes are more diverse. Information Science (L01), for example, contains, among

others, Communications Media (L01.178), Computer Security (L01.209) and Pat-

tern Recognition (L01.725). Another heterogeneous sub-hierarchy is Natural Science
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(H01). Among the children of H01 I find Chemistry (parent of Biochemistry), Elec-

tronics (parent of Amplifiers and Robotics), Mathematics (Fractals, Game Theory

and Fourier Analysis). In other words, I find a wide range of concepts that are not

described by a simple relationship.

These observations suggest that once an algorithm descends to a homogeneous

level, words falling into the subhierarchy at that level (and below it) may behave

similarly with respect to relation assignment.

2.7.4 Counting Noun Compounds

In this and the next section, I describe how I investigated the hypothesis:

For all two-word noun compounds (NCs) that can be characterized by a

category pair (CP), a particular semantic relationship holds between the

nouns comprising those NCs.

The kinds of relations I found are similar to those described in Section 2.7.2. Note

that, in this analysis I focused on determining which sets of NCs fall into the same

relation, without explicitly assigning names to the relations themselves. Furthermore,

the same relation may be described by many different category pairs (see Section

2.7.5.5).

First, I extracted two-word noun compounds from approximately 1M titles and

abstracts from the Medline collection of biomedical journal articles, resulting in about

1M NCs. The NCs were extracted by finding adjacent word pairs in which both words

are tagged as nouns by a part-of-speech tagger (Brill, 1995) and appear in the MeSH

hierarchy, and the words preceding and following the pair do not appear in MeSH.14

Of these two-word noun compounds, 79,677 were unique.

14Clearly, this simple approach results in some erroneous extractions.
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Next I used MeSH to characterize the NCs according to semantic category(ies).

For example, the NC fibroblast growth was categorized into A11.329.228 (Fibroblasts)

and G07.553.481 (Growth).

Note that the same words can be represented at different levels of description.

For example, fibroblast growth can be described by the MeSH descriptors A11.329.228

G07.553.481 (original level), but also by A11 G07 (Cell and Physiological Processes,

level 1) or A11.329 G07.553 (Connective Tissue Cells and Growth and Embryonic

Development, level 2). If a noun fell under more than one MeSH ID, I made multiple

versions of this categorization. I refer to the result of this renaming as a category

pair (CP).

I placed these CPs into a two-dimensional table, with the MeSH category for

the first noun on the X axis, and the MeSH category for the second noun on the

Y axis. Each intersection indicates the number of NCs that are classified under the

corresponding two MeSH categories.

A visualization tool (Ahlberg and Shneiderman, 1994) allowed me to explore the

dataset to see which areas of the category space are most heavily populated, and to

get a feeling for whether the distribution is uniform or not (see Figure 2.9). If my

hypothesis holds (that NCs that fall within the same category pairs are assigned the

same relation), then if most of the NCs fall within only a few category pairs then we

only need to determine which relations hold between a subset of the possible pairs.

Thus, the more clumped the distribution, the easier (potentially) my task is. Figure

2.9 shows that some areas in the CP space have a higher concentration of unique NCs

(the Anatomy, and the E through N sub-hierarchies, for example), especially when I

focus on those for which at least 50 unique NCs are found.

Figure 2.10 focuses on the distribution of NCs for which the first noun can be

classified under the Anatomy category. Note that many of the possible second noun

categories are sparsely populated, again potentially reducing the space of the problem.
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Figure 2.9: Distribution of Level 1 Category Pairs. Mark size indicates the number of
unique NCs that fall under the CP. Only those for which > 50 NCs occur are shown.

2.7.5 Labeling NC Relations

Given the promising nature of the NC distributions, the question remains as to

whether or not the hypothesis holds. To answer this, I examined a subset of the

CPs to see if I could find positions within the sub-hierarchies for which the relation

assignments for the member NCs are always the same.

2.7.5.1 Method

I first selected a subset of the CPs to examine in detail. For each of these I examined,

by hand, 20% of the NCs they cover, paraphrasing the relation between the nouns,

and seeing if that paraphrase was the same for all the NCs in the group. If it was

the same, then the current levels of the CP were considered to be the correct levels

of description. If, on the other hand, several different paraphrases were found, then
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Figure 2.10: Distribution of Level 1 Category Pairs in which the first noun is from the A
(Anatomy) category. Mark size indicates the number of unique NCs that fall under the
CP.
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the analysis descended one level of the hierarchy. This repeated until the resulting

partition of the NCs resulted in uniform relation assignments.

For example, all the following NCs were mapped to the same CP, A01 (Body

Regions) and A07 (Cardiovascular System): scalp arteries, heel capillary, shoulder

artery, ankle artery, leg veins, limb vein, forearm arteries, finger capillary, eyelid

capillary, forearm microcirculation, hand vein, forearm veins, limb arteries, thigh vein,

foot vein. All these NCs are “similar” in the sense that the relationships between the

two words are the same; therefore, I do not need to descend either hierarchy. I call

the pair (A01, A07) a “rule,” where a rule is a CP for which all the NCs under it

have the same relationship. In the future, when I see an NC mapped to this rule, I

will assign this semantic relationship to it.

On the other hand, the following NCs, having the CP A01 (Body Regions) and

M01 (Persons), do not have the same relationship between the component words:

abdomen patients, arm amputees, chest physicians, eye patients, skin donor. The

relationships are different depending on whether the person is a patient, a physician

or a donor. I therefore descend the M01 sub-hierarchy, obtaining the following clusters

of NCs:

A01 M01.643 (Patients): abdomen patients, ankle inpatient, eye outpatient

A01 M01.526 (Occupational Groups): chest physician, eye nurse, eye physician

A01, M01.898 (Donors): eye donor, skin donor

A01, M01.150 (Disabled Persons): arm amputees, knee amputees.

In other words, to correctly assign a relationship to these NCs, we needed to

descend one level for the second word. The resulting rules in this case are (A01

M01.643), (A01, M01.150) etc. Figure 2.11 shows one CP for which I needed to

descend 3 levels.
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A01 H01 (Natural Sciences):
A01 H01 abdomen x-ray, ankle motion

A01 H01.770 (Science): skin observation
A01 H01.548 (Mathematics): breast risk
A01 H01.939 (Weights and Measures): head calibration
A01 H01.181 (Chemistry): skin iontophoresis
A01 H01.671 (Physics)

A01 H01.671.538 (Motion): shoulder rotations
A01 H01.671.100 (Biophysics): shoulder biomechanics
A01 H01.671.691 (Pressure): eye pressures
A01 H01.671.868 (Temp.): forehead temperature
A01 H01.671.768 (Radiation): thorax x-ray
A01 H01.671.252 (Electricity): chest electrode
A01 H01.671.606 (Optics): skin color

Figure 2.11: Levels of descent needed for NCs classified under A01 H01.

Another example is the CP J01, A01 (Technology, Industry, and Agriculture and

Body Regions): glass eye, neoprene elbow, rubber fingers, detergent head, biotechnol-

ogy face. Here I go down on the first noun, obtaining the CPs:

J01.637 (Manufactured Materials) A01: glass eye, neoprene elbow, rubber fingers

J01.516 (Household Products) A01: detergent head (probably “wrong” NCs)

J01.937 (Transportation) A01: boat heel (wrong)

J01.219 (Commerce) A01: business backs (wrong).

Here going down allowed me to distinguish the correct vs. the “wrong” NCs.

In my collection, a total of 2627 CPs at level 1 have at least 10 unique NCs. Of

these, 798 (30%) are classified with A (Anatomy) for either the first or the second

noun. I randomly selected 250 of such CPs for analysis.

I also analyzed 21 of the 90 CPs for which the second noun was H01 (Natural

Sciences); I decided to analyze this portion of the MeSH hierarchy because the NCs

with H01 as second noun are frequent in my collection, and because I wanted to test

the hypothesis that I do indeed need to descend farther for heterogeneous parts of
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MeSH.

Finally, I analyzed three CPs in category C (Diseases); the most frequent CP

in terms of the total number of non-unique NCs is C04 (Neoplasms) A11 (Cells),

with 30606 NCs; the second CP was A10 C04 (27520 total NCs) and the fifth most

frequent, A01 C04, with 20617 total NCs; I analyzed these CPs.

I started with the CPs at level 1 for both words, descending when the correspond-

ing clusters of NCs were not homogeneous and stopping when they were. I did this

for 20% of the NCs in each CP. The results were as follows.

For 187 of 250 (74%) CPs with a noun in the Anatomy category, the classification

remained at level 1 for both words (for example, A01 A07). For 55 (22%) of the

CPs I had to descend 1 level (e.g., A01 M01: A01 M01.898, A01 M01.643) and for

7 CPs (2%) I descended two levels. I descended one level most of the time for the

sub-hierarchies E (Analytical, Diagnostic and Therapeutic Techniques), G (Biological

Sciences) and N (Health Care) (around 50% of the time for these categories combined).

I never descended for B (Organisms) and did so only for A13 (Animal Structures)

in A. This was to be able to distinguish a few non-homogeneous subcategories (e.g.,

milk appearing among body parts, thus forcing a distinction between buffalo milk and

cat forelimb).

For CPs with H01 as the second noun, of the 21 CPs analyzed, we observed the

following (level number, count) pairs: (1, 1) (2, 8) (3, 12).

In all but three cases, the descending was done for the second noun only. This may

be because the second noun usually plays the role of the head noun in two-word noun

compounds in English, thus requiring more specificity. Alternatively, it may reflect

the fact that for the examples I have examined so far, the more heterogeneous terms

dominate the second noun. Further examination is needed to answer this decisively.
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2.7.5.2 Accuracy

I tested the resulting classifications by developing a randomly chosen test set (20% of

the NCs for each CP), entirely distinct from the labeled set, and used the classifica-

tions (rules) found above to automatically predict which relations should be assigned

to the member NCs. An independent evaluator with biomedical training checked these

results manually, and found high accuracies: for the CPs which contained a noun in

the Anatomy domain, the assignments of new NCs were 94.2% accurate computed

via intra-category averaging, and 91.3% accurate with extra-category averaging. For

the CPs in the Natural Sciences (H01) I found 81.6% accuracy via intra-category

averaging, and 78.6% accuracy with extra-category averaging. For the three CPs in

the C04 category I obtained 100% accuracy.

The total accuracy across the portions of the A, H01 and C04 hierarchies that

I analyzed were 89.6% via intra-category averaging, and 90.8% via extra-category

averaging.

The lower accuracy for the Natural Sciences category illustrates the dependence

of the results on the properties of the lexical hierarchy. The method can generalize

well if the sub-hierarchies are in a well-defined semantic relation with their ancestors.

If they are a list of “unrelated” topics, I cannot use the generalization of the higher

levels; most of the mistakes for the Natural Sciences CPs occurred in fact when we

failed to descend for broad terms such as Physics. Performing this evaluation allowed

me to find such problems and update the rules; the resulting categorization should

now be more accurate.

2.7.5.3 Generalization

An important issue is whether this method is an economic way of classifying the NCs.

The advantage of the high level description is, of course, that we need to assign by
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hand many fewer relationships than if we used all CPs at their most specific levels.

My approach provides generalization over the “training” examples in two ways. First,

I find that we can use the juxtaposition of categories in a lexical hierarchy to identify

semantic relationships. Second, I find we can use the higher levels of these categories

for the assignments of these relationships.

To assess the degree of this generalization I calculated how many CPs are ac-

counted for by the classification rules created above for the Anatomy categories. In

other words, if we know that A01 A07 unequivocally determines a relationship, how

many possible (i.e., present in my collection) CPs are there that are “covered by”

A01 A07 and that we do not need to consider explicitly? It turns out that my 415

classification rules cover 46001 possible CP pairs.15

This, and the fact that I achieve high accuracies with these classification rules,

show that I successfully use MeSH to generalize over unique NCs.

2.7.5.4 Ambiguity

A common problem for NLP tasks is ambiguity. In this work I observe two kinds:

lexical (word sense) and “relationship” ambiguity. As an example of the former,

mortality can refer to the state of being mortal or to death rate. As an example of

the latter, bacteria mortality can either mean “death of bacteria” or “death caused

by bacteria.”

In some cases, the relationship assignment method described here can help dis-

ambiguate the meaning of an ambiguous lexical item. Milk for example, can be both

Animal Structures (A13) and Food and Beverages (J02). Consider the NCs chocolate

milk, coconut milk that fall under the CPs (B06 -Plants-, J02) and (B06, A13). The

15Although I began with 250 CPs in the A category, when a descend operation is performed,
the CP is split into two or more CPs at the level below. Thus the total number of CPs after all
assignments are made was 415.
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CP (B06, J02) contains 180 NCs (other examples are berry wines, cocoa beverages)

while (B06, A13) has only 6 NCs (4 of which with milk). Assuming then that (B06,

A13) is “wrong,” I will assign only (B06, J02) to chocolate milk, coconut milk, there-

fore disambiguating the sense for milk in this context (Beverage). Analogously, for

buffalo milk, caprine milk I also have two CPs (B02, J02) (B02, A13). In this case,

however, it is easy to show that only (B02 -Vertebrates-, A13) is the correct one (i.e.

yielding the correct relationship) and I then assign the MeSH sense A13 to milk.

Nevertheless, ambiguity may be a problem for this method. I see five different

cases:

1. Single MeSH senses for the nouns in the NC (no lexical ambiguity) and only

one possible relationship which can predicted by the CP; that is, no ambiguity.

For instance, in abdomen radiography, abdomen is classified exclusively under

Body Regions and radiography exclusively under Diagnosis, and the relation-

ship between them is unambiguous. Other examples include aciclovir treatment

(Heterocyclic Compounds, Therapeutics) and adenocarcinoma treatment (Neo-

plasms, Therapeutics).

2. Single MeSH senses (no lexical ambiguity) but multiple readings for the rela-

tionships that therefore cannot be predicted by the CP. It was quite difficult

to find examples of this case; disambiguating this kind of NC requires looking

at the context of use. The examples I did find include hospital databases which

can be databases regarding (topic) hospitals, databases found in (location)

or owned by hospitals. Education efforts can be efforts done through (edu-

cation) or done to achieve education. Kidney metabolism can be metabolism

happening in (location) or done by the kidney. Immunoglobulin staining,

(D12 -Amino Acids, Peptides-, and Proteins, E05 -Investigative Techniques-)

can mean either staining with immunoglobulin or staining of immunoglobulin.
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3. Multiple MeSH mappings but only one possible relation. One example of this

case is alcoholism treatment where treatment is Therapeutics (E02) and alco-

holism is both Disorders of Environmental Origin (C21) and Mental Disorders

(F03). For this NC we have therefore 2 CPs: (C21, E02) as in wound treat-

ments, injury rehabilitation and (F03, E02) as in delirium treatment, schizophre-

nia therapeutics. The multiple mappings reflect the conflicting views on how to

classify the condition of alcoholism, but the relationship does not change.

Another example along this line is milk temperature. Milk is Animal Structures

(A13) and Food and Beverages (J02), temperature is Environment and Public

Health (G03) and Natural Science (H01). For this NC we have therefore 4 CPs

but the relationship is the same for all of of them.

4. Multiple MeSH mappings and multiple relations that can be predicted by the

different CPs. For example, Bread diet can mean either that a person usually

eats bread or that a physician prescribed bread to treat a condition. This differ-

ence is reflected by the different mappings: diet is both Investigative Techniques

(E05) and Metabolism and Nutrition (G06), bread is Food and Beverages (J02).

We have therefore two CPs for this NC: (J02 E05) in which case we would have

the relationship “prescription of” and (J02 G06) for which we have “usual nu-

trition.” These different relationships are correctly predicted by the different

senses for diet; in these cases, the category can help disambiguate the relation

(as opposed to in case 5 below); word sense disambiguation algorithms that use

context may be helpful.

5. Multiple MeSH mappings and multiple relations that cannot be predicted by

the different CPs. As an example of this case, bacteria mortality can be both

“death of bacteria” or “death caused by bacteria.” The multiple mapping for

mortality (Public Health, Information Science, Population Characteristics and
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Investigative Techniques) does not account for this ambiguity. Similarly, for

inhibin immunization, the first noun falls under Hormones and Amino Acids,

while immunization falls under Environment and Public Health and Investiga-

tive Techniques. The meanings are immunization against inhibin or immuniza-

tion using inhibin, and they cannot be disambiguated using only the MeSH

descriptors.

I currently do not have a way to determine how many instances of each case

occur. Cases 2 and 5 are the most problematic; however, as it was quite difficult to

find examples for these cases, I suspect they are relatively rare.

A question arises as to if representing nouns using the topmost levels of the hier-

archy causes a loss in information about lexical ambiguity. In effect, when I represent

the terms at higher levels, I assume that words that have multiple descriptors under

the same level are very similar, and that retaining the distinction would not be useful

for most computational tasks. For example, osteosarcoma occurs twice in MeSH, as

C04.557.450.565.575.650 and C04.557.450.795.620. When described at level 1, both

descriptors reduce to C04, at level 2 to C04.557, removing the ambiguity. By contrast,

microscopy also occurs twice, but under E05.595 and H01.671.606.624. Reducing these

descriptors to level 1 retains the two distinct senses.

To determine how often different senses are grouped together, we calculated the

number of MeSH senses for words at different levels of the hierarchy. Table 2.10 shows

a histogram of the number of senses for the first noun of all the unique NCs in our

collection, the average degree of ambiguity and the average description lengths.16 The

average number of MeSH senses is always less than two, and increases with length of

description, as is to be expected.

I observe that 3.6% of the lexical ambiguity is at levels higher that 3, 16.0% at

16I obtained very similar results for the second noun.
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level 3, 21.4% at level 2 and 59.0% at level 1. Level 2 and 3 combined account

for more than 80% of the lexical ambiguity. This means that when a noun has

multiple senses, those senses are more likely to come from different main subtrees of

MeSH (A and B, for example), than from different deeper nodes in the same subtree

(H01.671.538 vs. H01.671.252). This fits nicely with my method of describing the

NCs with the higher levels of the hierarchy: if most of the ambiguity is at the highest

levels (as these results show), information about lexical ambiguity is not lost when

we describe the NCs using the higher levels of MeSH. Ideally, however, we would like

to reduce the lexical ambiguity for similar senses and to retain it when the senses are

semantically distinct (like, for example, for diet in case 4). In other words, ideally, the

ambiguity left at the levels of my rules accounts for only (and for all) the semantically

different senses. Further analysis is needed, but the high accuracy I obtained in the

classification seems to indicate that this indeed is what is happening.

2.7.5.5 Multiple Occurrences of Semantic Relations

Because I determine the possible relations in a data-driven manner, the question

arises of how often does the same semantic relation occur for different category pairs.

To determine the answer, I could (i) look at all the CPs, give a name to the relations

and “merge” the CPs that have the same relationships; or (ii) draw a sample of NC

examples for a given relation, look at the CPs for those examples and verify that all

the NCs for those CPs are indeed in the same relationship.

I may not be able to determine the total number of relations, or how often they

repeat across different CPs, until I examine the full spectrum of CPs. However, I did

a preliminary analysis to attempt to find relation repetition across category pairs. As

one example, we hypothesized a relation “Afflicted by” and verified that it applies to

all the CPs of the form (Disease C, Patients M01.643), e.g.: anorexia (C23) patients,

cancer (C04) survivor, influenza (C02) patients. This relation also applies to some
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# Senses Original L3 L2 L1
1 (Unambiguous) 51539 51766 54087 58763

2 18637 18611 18677 17373
3 5719 5816 4572 2177
4 2222 2048 1724 1075
5 831 827 418 289
6 223 262 167 0
7 384 254 32 0
8 2 2 0 0
9 61 91 0 0
10 59 0 0 0

Total(Ambiguous) 28138 27911 25590 20914

Avg # Senses 1.56 1.54 1.45 1.33
Avg Desc Len 3.71 2.79 1.97 1

Table 2.10: The number of MeSH senses for N1 when truncated to differ-
ent levels of MeSH. Original refers to the actual (non-truncated) MeSH descriptor
(C04.557.450.565.575.650, for example). Avg # Senses is the average number of senses
computed for all first nouns in the collection. Avg Desc Len is the average description
length; the value for level 2 is less than 2 and for level 3 is less that 3, because some
nouns are always mapped to higher levels (for example, cell is always mapped to A11).
L1 is level 1 (C04), L2 is level 2 (C04.557) and L3 is level 3 (C04.557.450).
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of the F category (Psychiatry), as in delirium (F03) patients, anxiety (F01) patient.

It becomes a judgement call whether to also include NCs such as eye (A01) patient,

gallbladder (A03) patients, and more generally, all the (Anatomy, Patients) pairs.

The question is, is “afflicted-by (unspecified) Disease in Anatomy Part” equivalent to

“afflicted by Disease?” The answer depends on one’s theory of relational semantics.

Another relation could be “Time of”: abscess recurrence (C23, C23.550) hockey

season (I03, G03.230) pollen season (B06, G03.230), acceleration time (H01, H01.862),

dialysis time (E05, H01.862), convalescence time (C23, H01.862).

The relation “Person/center who treats” apply, for example, to arm physicians,

eye nurse and in general to the CPs (Anatomy, Occupational Groups), to arthritis

physician, disease caregiver, stroke investigators, asthma nurse (Diseases, Occupa-

tional Groups), inpatient nurses (Patients, Occupational Groups), adolescent hos-

pital, women hospital (Persons, Health Facilities), tuberculosis hospital, aids labora-

tory, trauma hospital (Diseases, Health Facilities) and heart hospital, eye hospital

(Anatomy, Health Facilities).

“Caused by” apply to cirrhosis death, infection death (Disease, Death) virus in-

fection, virus fever (Viruses, Diseases).

As another example, consider the relationship “Located in” like in hospital dust,

laboratory air (Health Facilities, Environment), hospital nurse (Health Facilities, Oc-

cupational Groups), arm fistulas, abdomen wound (Anatomy, Diseases) ankle bone,

arm muscle (Anatomy, Anatomy), city children (Geographic Locations, Persons) and

brazil nuts (Geographic Locations, Plants).

2.7.6 Conclusions about the “hierarchy approach”

I provided evidence that the upper levels of a lexical hierarchy can be used to accu-

rately classify the relations that hold between two-word technical noun compounds.
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Here I focus on biomedical terms using the biomedical lexical ontology MeSH. It

may be that such technical, domain-specific terminology is better behaved than NCs

drawn from more general text; this would require assessment of the technique in other

domains to fully assess its applicability.

It is also necessary to ensure that this technique works across the full spectrum of

the lexical hierarchy. I have demonstrated the likely usefulness of such an exercise, but

all of our analysis was done by hand. It may be useful enough to simply complete the

job manually; however, it would be preferable to automate some or all of the analysis.

There are several ways to go about this. One approach would be to use existing

statistical similarity measures (see, e.g., Budanitsky and Hirst, 2001) to attempt to

identify which subhierarchies are homogeneous. Another approach would be to see

if, after analyzing more CPs, those categories found to be heterogeneous should be

assumed to be heterogeneous across classifications, and similarly for those that seem

to be homogeneous.

2.8 Conclusions

Technical text is especially rich in noun compounds and any language understanding

program needs to be able to interpret them. My work on noun compounds is an

important part of a larger effort to investigate the extraction of semantics from text.

In this chapter, I discussed the problem of the assignment of semantic relations for

noun compounds and I proposed two approaches for tackling this problem.

The main idea of the first approach is to define a set of relations that can hold be-

tween the terms and use standard machine learning techniques and a lexical hierarchy

to train a classification system (see Section 2.6). The results are quite promising: I

achieved an accuracy of about 60% for multi-class classification with 18 classes. I also

showed that a class-based representation performs as well as a lexical-based model
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despite the reduction of raw information content and despite a somewhat errorful

mapping from terms to concepts.

The second approach explores the possibility of using that same lexical hierarchy

but this time without statistics and machine learning. I show that mere membership

within a particular subbranch of the hierarchy is sufficient in many cases for assign-

ment of the appropriate semantic relation (Section 2.7). I find that the topmost levels

of the hierarchy yield an accurate classification, thus providing an economic way of

assigning relations to noun compounds.

An important issue left unaddressed in this work is how to extend the technique

to multi-word noun compounds such as acute migraine treatment and oral migraine

treatment.
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Role and relation identification

3.1 Introduction and problem description

In Chapter 2, I described a system for the classification of the semantic relations that

held between two words in noun compounds. In this chapter, I extend this analysis

to the sentence level. Specifically, I examine the problem of identifying entities of

types “treatment” and “disease” in bioscience text and the problem of distinguishing

among seven relation types that can occur between them. These tasks are considered

part of the general problem of “information extraction.”

In particular, I developed algorithms to tackle the following problems (Rosario

and Hearst, 2004):

(1) Named entity recognition

The entities of interest for this chapter are treatment and disease (TREAT and

DIS throughout this chapter). For example, given a phrase such as

The fluoroquinolones for urinary tract infections: a review.

I want to extract all and only the strings of text that correspond to the semantic
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roles TREAT (fluoroquinolones) and DIS (urinary tract infections). (This task

is also called in the literature “role, entity or information extraction.”)

(2) Relation recognition

To identify the type of relations that hold between the semantic roles in a

sentence. Given the sentence above, I want the system to classify the sentence

as containing a cure relationship.

Relation recognition is important because very often we are interested not only in

the entities but in how the entities are related to each other (for example, cells being

part of an organ) or in the effect that one entity has on another (a protein inhibiting

another protein or a drug curing a disease). While the entities are often realized as

noun phrases, the relationships often correspond to grammatical functional relations.

Often the different relationships are determined by the entities involved, for exam-

ple an ORGANIZATION and a LOCATION could be in a location of type of relation

and an ORGANIZATION and an EMPLOYEE could be related by employer of but

not by location of, in which one entity must always be a LOCATION.1 A more diffi-

cult and interesting case is when several different relations can hold between the same

pair of entities; in this case, the recognition of the entities does not fully disambiguate

the relations. For example, in the following sentences, hepatitis, which is a DIS, can

be in different semantic relationships with the TREAT present in the sentences. In

Effect of interferon on hepatitis B.

there is a unspecified effect of the treatment interferon on the disease hepatitis. In

the following sentence, the vaccine prevents hepatitis

A two-dose combined hepatitis A and B vaccine would facilitate

immunization programs.

1I denote the entities with capital letters; also, I interchange the terms entity, semantic class,
class, role but I’ll assume they all mean the same thing.
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while in:

These results suggest that con A-induced hepatitis was ameliorated

by pretreatment with TJ-135.

Therefore administration of TJ-135 may be useful in patients with

severe acute hepatitis accompanying cholestasis or in those with

autoimmune hepatitis.

the disease hepatitis is treated or cured by the treatment TJ-135. The disease can

also occur alone, without a treatment, as in hepatitis below:

Histologic diagnosis of chronic hepatitis, grading and staging

The different relations can be expressed in different ways. They can be expressed

as nominalizations, as in

The treatment of diabetes 2 by the classic oral antidiabetic drugs

(sulfamides and biguanides)

as well as verbal predications, as in

The use of zinc lozenges to treat cold symptoms deserves further

study.

Also, the entities often entail relational information just by virtue of their seman-

tics, as in the following sentences where we can infer that there is a cure kind of

relationship only because we know the meanings of the words.

Elective surgery for colorectal cancer in the aged: a clinical

- economical evaluation.

Headache drugs.
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In this chapter, I describe my work on developing algorithms to identify the entities

and the relationships between them. I compare five generative graphical models and

a neural network, using lexical, syntactic, and semantic features. I find the latter

particularly helpful for achieving high classification accuracy.

The remainder of the chapter is organized as follows: in the next section, I discuss

related work (this discussion will be relevant to Chapter 4, in which I tackle the

problem of labeling protein-protein interactions); Section 3.3 describes the data, the

semantic relations, how the annotation was done and the evaluation. In Section 3.5,

I discuss the features used. Finally, in Section 3.7 I present the models implemented

for these tasks and the results they achieved.

3.2 Related work

This section describes the related work for the tasks of information and relation

extraction (in this order). There are several dimensions along which we can analyze

the related work. Here, I report on the domains that have been tackled, on the models

that have been used, on the use of syntactic information and on the use of unlabeled

data.

Most of the related work on relationship extraction assumes that the entity extrac-

tion task has been performed by another system and the entities of interests therefore

are given as input. Note that the models of Section 3.7 do not make this assumption

and indeed perform role and relation extraction simultaneously.

3.2.1 Domains tackled

We can roughly divide the research on IE into work that tackles general text and

work specific to the bioscience domain.
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For the domain-independent approaches, most of the research in IE has focused

on the tasks in the MUC (Message Understanding) conferences. These conferences,

which focus on the evaluation of information extraction systems applied to a common

task, were funded by the government agency ARPA to measure progress in informa-

tion extraction.2 MUC-4 (1992) was about extracting information about terrorist

events in Latin America from newswire articles (Riloff, 1993) and MUC-5 (1993)

about joint ventures. MUC-6 (1995) and MUC-7 (2001) involved the recognition of

entity names (people and organizations, for a management succession scenario), place

names, temporal expressions, and certain types of numerical expressions (Borthwick

et al., 1998; Bikel et al., 1999); MUC-7 was about air crashes and missile launches.

The ACE competition (Automatic Content Extraction)3 is devoted to three types

of sources: newswire, broadcast news (with text derived from ASR), and newspaper

(with text derived from OCR); see Culotta and Sorensen (2004) for a paper that

tackles this data.

Other work involves the extraction of locations and organizations (Agichtein and

Gravano, 2000), and the extraction of speakers and locations from seminar announce-

ments, of company names and job titles from Usenet job announcements and infor-

mation about corporate acquisitions (Freitag and McCallum, 2000).

Gildea and Jurafsky (2002) and Thompson et al. (2003) address the problem of

extracting semantic roles that are at an intermediate level between very general roles

such as AGENT and PATIENT and those specific to individual verbs or specific

situations (such as the terrorist in MUC or genes names in bioscience). These can be

described by the frame level from the FrameNet project (Baker et al., 1998).

Turning now to the bioscience domain, although a huge amount of biological in-

formation is available in electronic form, most of it is unstructured text in MEDLINE

2See for example, http://www.cs.nyu.edu/cs/faculty/grishman/muc6.html
3http://www.itl.nist.gov/iad/894.01/tests/ace/index.htm
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citations and full-text journals; methods to automatically process this information

are greatly needed. In the IE field, most of the work so far has focused on extracting

names of genes and proteins but also DNA, RNA, mRNA (Craven and Kumlien, 1999;

Stapley and Benoit, 2000; Rindflesch et al., 2000a; Collier et al., 2000; McDonald and

Pereira, 2005) and protein-protein interactions (Blaschke et al., 1999b; Craven, 1999;

Pustejovsky et al., 2002; Rindfleisch et al., 1999). These papers are discussed in more

detail later in this thesis.

3.2.2 Entity Extraction: Models

There are many IE systems that are rule-based: Appelt et al. (1993), for example,

or Feldman et al. (2002) and Friedman et al. (2001) in the bioscience domain. How-

ever, this thesis is mainly concerned with statistical models and in what follows, I

distinguish between several types of these.

3.2.2.1 Pattern Matching

“Pattern Matching” systems are not actually statistical, but in this section I describe

some of them because they are an important part of the IE research, and because,

at least, they automatically construct rules and often choose them on the basis of

statistics (as opposed to systems for which the rules are hand-written).

The AutoSlog system (Riloff, 1993) constructs dictionaries for IE by creating

extraction patterns automatically using heuristic rules. It relies on labeled data with

domain specific tags.4 Some heuristic rules (defined manually) are applied to the

labeled text; an extraction pattern is created by instantiating the rule with the specific

words that it matched in the sentence. For example, in the sentence

Ricardo Castellar, the mayor, was kidnapped yesterday by the FMLN.

4The domain described in the paper is on “terrorist events” and the training data was the MUC-4
corpus.
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Ricardo Castellar was labeled as VICTIM. When the system is exposed to this sen-

tence, all of the heuristic rules are tested and the rule “<subject> passive-verb” is

found to match. The instantiated pattern that results is: “VICTIM was kidnapped.”

In new text, this pattern will be instantiated every time the verb “kidnapped” ap-

pears in a passive construction and the subject will be extracted as a VICTIM. The

generated patterns are then manually inspected by a person who decides which ones

to keep and which ones to reject. An F-measure of 50.51% is reported.

Soderland et al. (1995) describe CRYSTAL, a system similar to AutoSlog, in that

it also automatically constructs dictionaries for IE by learning extraction patterns

from labeled data. The task is to extract the fields DIAGNOSIS and SIGN OR

SYMPTOM from hospital discharge reports. CRYSTAL allows more expressive pat-

tern extraction patterns than AutoSlog: it considers the semantic classes of the words,

and a matching occurs if the semantic classes are matched. For example, a pattern

such as “PATIENT denies SIGN OR SYMPTOM” would extract the sentence “The

patient denies any episodes of nausea” because nausea is a SIGN OR SYMPTOM,

but would not extract “She denies any history of asthma” because asthma belongs

to the semantic class DISEASE which is not a sub-class of SIGN OR SYMPTOM.

The semantic classes used are those in the Semantic Network of UMLS.5 Given an

initial set of patterns obtained from the labeled data (that are actually called “con-

cept nodes in Soderland et al., 1995), CRYSTAL gradually relaxes the constraints

on these initial patterns to broaden their coverage, and it merges similar definitions

to form a more compact dictionary (these steps also take into account the semantic

classes). This is an improvement with respect with AutoSlog. Another similar system

along these lines is WAVE, described in Aseltine (1999), that like CRYSTAL relies on

unification to build more general patterns (but how the generalization is controlled is

5The Unified Medical Language System (UMLS) is a biomedical lexical resource produced and
maintained by the National Library of Medicine (Humphreys et al., 1998).
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different); WAVE is a on-line system (it learns from a stream of training instances)

while AutoSlog and CRYSTAL are batch algorithms. These systems can be (and in

fact, often are) the first step of bootstrapping systems (see Section 3.2.5.4).

3.2.2.2 Hidden Markov Models (HMMs)

HMMs are generative graphical models that are naturally suited for segmentation

tasks. Many papers have been written on the use of HMMs for information extraction.

HMMs are a natural solution for tasks involving discrete sequences, as is the case of

IE (see Rabiner and Juang, 1986, for a nice short description of HMMs). My work

on the dynamic models described in Section 3.7.1 was inspired by the HMM models.

Freitag and McCallum (2000) address the problem of (automatic) selection of

HMM state-transition structure and show that this improves the accuracy on some

IE tasks. They begin with a minimum number of states, generate a set of structures

by various splitting state operations and choose the structures that give the best

performances on a validation test; they do this procedure iteratively. They tested

this approach on eight IE tasks (for example, extraction of JOBS from Usenet job

announcements, SPEAKER and LOCATION from a collection of seminar announce-

ments). They report an average F-measure of 57% across all tasks, and they show

this is an improvement from the results obtained by other methods. This is an in-

teresting paper that addresses an important problem of HMM formulation. It would

have been nice, however, to see a comparison with a fully connected HMM in which

the structure is learned via parameter estimation,6 especially given that the number

of states for the problem stated in this paper is small enough. They compare their

system to a “simple HMM,” which is the model with which the structure selection

begins; this is a model with 4 states (backgrounds, prefix, suffix and target) with the

structure defined by hand. Freitag and McCallum (2000) note how this simple model

6The zeros in the state transition correspond to missing links between the states.
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out-performs the other methods (rule-learning approaches) for certain tasks. It would

have been natural to investigate the performance of a simple 4-state fully connected

model trained with ML, without structure selection. This is actually in part done by

Seymore et al. (1999) in which another way of doing structure selection is introduced

and compared with the ML model; they show that one (automatic) way of doing

structure selection is essentially equivalent to the ML model (90.6% in accuracy for

the structure selection method and 90.5% for ML) while they get an improvement

in accuracy (91.3%) with another partially manual structure selection. In my view,

these papers have not shown that automatic structure selection is really beneficial,

at least for these models and this task.

Freitag and McCallum (1999) introduce a smoothing technique (called shrinkage,

also known as “deleted interpolation”) to address the problem of limited training data.

They apply the smoothing to the emission probabilities, by creating four hierarchical

shrinkage configurations and by using EM to find the optimal values of the mixing

components.

Bikel et al. (1999) present an interesting variant of the HMM: the class C of time

t depends on both the class and observation (word, w) at time t − 1, which can be

written as P (C | C−1, w−1), and the first word of a class depends on its class and

on the previous class (P (wfirst | C, C−1)), and all the subsequent words inside the

class depend on the class and on the previous word (P (w | C, w−1)). The model is

represented in Fig 3.1. They report an impressive F-measure of 94.9% for the task

of extracting names of persons and organizations, locations, dates, and numerical

quantities.

Ray and Craven (2001) hypothesize that incorporating some information about

the sentence structure may be beneficial for the task of IE. They represent a sentence

as a sequence of phrases, where a phrase consists of a grammatical type (NP, VP, PP,
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NC NC

w w w w w w

NC

w w w

Figure 3.1: The HMM-like model in Bikel et al. (1999).

...) and the words that are part of that phrase.7 They use an HMM whose states are

<type, label> tuples (for example, <NP, LOCATION>) and whose observations are

the sequences for words for that phrase (for example, <the endoplasmic reticulum>).

To the best of my knowledge, this is the only work that analyzes the contribution

of syntactic information in the HMM framework. They train a positive and a null

model. The observation probabilities P (o | q), where o is the observation and q

the state, become
∏|pi|

j=1 P (oj | q) where pi is the number of words emitted for that

phrase and oj is the jth word in the phrase (this is essentially a Naive Bayes model

for the words in the phrase). They compare this “phrase” model with two “token”

models, one that includes the part-of-speech of the words and one with only words

and nonsyntactic information, and report better results for “phrase,” suggesting that

there is value in representing the grammatical function for this task. They also

investigate the use of discriminative training and report improvements in accuracy

for the same levels of recall. The overall results, however, are quite poor; their results

graphs show, approximately, an F-measure of 26% at 2% recall and an F-measure of

32% at 35% recall for the relationship subcellular location and an F-measure of 50%

for disorder-association. (These results are for the best cases of the “phrase” model

and discriminative training.)

Other recent papers on the use of HMM for IE are Zhou and Su (2002) and Collier

et al. (2000). A model closely related to HMM is proposed by Thompson et al. (2003)

7They use the Sundance system (Riloff, 1998) to obtain a shallow parse of the text.
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to both extract the (FrameNet) semantic roles and determine the frame. The models

I propose for this thesis (see Section 3.7) are very similar to these HMM models and

to that in Thompson et al. (2003).

3.2.2.3 Discriminative Models

Unlike generative approaches that model the joint probability distribution of the fea-

tures and the classes (and compute the posterior probability of classes given features

from the joint probability), discriminative methods directly learn a mapping from

the features to classes (often using some form of kernel function or other “similarity

measure”). A special case of the latter are discriminative methods that directly learn

the posterior probability of the class given the features; these posterior probabilities

can be thresholded to obtain a classification decision. Ng and Jordan (2002) indicate

that with fully observed data for classification tasks a discriminative approach may

be more appropriate, while generative models are the natural choice with partially

observed or missing data. Since labeled data is expensive to collect, generative models

may be useful when no labels are available.

Klein and Manning (2002) compare two model structures, HMM and an “upward”

conditional Markov model (the same as McCallum et al., 2000, described below) on

the task of part-of-speech tagging and note how the “independence assumption em-

bodied by the conditional structure” resulted in a lower accuracy for this model,

compared with the HMM. Klein and Manning (2002) also note that there is a dys-

functional behavior, a “reverse” explaining away-phenomenon, the observation bias

that happens when an observation explains its state so well that the previous state

is essentially ignored. They show how in fact it is the observation bias that actu-

ally contributed to the tagging error, rather than the label bias (which is another

dysfunctional behavior, another explaining away-phenomenon: when the previous

state explains the current one so well, the observation at the current state is ignored).
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They claim that the model structure is an important factor and that local conditional

structures are worse than generative models.

This approach is taken by Gildea and Jurafsky (2002) for FrameNet (see discus-

sion in Section 3.2.2.5) and Collins (2002) for detecting named entities boundaries.

McDonald and Pereira (2005) use conditional random fields (CRF) to extract genes

and proteins. CRFs are very closely related to the maximum entropy markov mod-

els described in the next section; their relationship is discussed in some detail in

McDonald and Pereira (2005).

3.2.2.4 Maximum Entropy Models

Maximum entropy markov models are also conditional models; in this section I de-

scribe some of the work done using this formalism because these models have become

increasingly popular in statistical language processing, mainly because of their ability

to incorporate a richer set of (possibly dependent) features (see Berger et al., 1996,

for a nice overview/introduction of maximum entropy models).

McCallum et al. (2000) present a model similar to the HMM based on the maxi-

mum entropy framework, MEMM, Maximum Entropy Markov Model. The two main

original contributions of this paper are:

1) The model represents a conditional probability of the state sequence given the

observations; (by inverting the arrows from the observations to the states); this is

done to address the problem of the HMM that uses a generative model while, in most

cases (e.g. for IE), we are really interested in solving a conditional problem.

2) The conditional probabilities P (st | ot, st−1) are parameterized by an exponential

model that allows for a richer representation in terms of many overlapping features.

They investigate segmenting Usenet FAQ-s into HEAD, QUESTION, ANSWER,

TAIL (which I think is an easier problem than the classical role extraction). The

segmentation is made at the line level, and in fact all the features are line-based fea-

82



Chapter 3. Role and relation identification

tures. I do not think this experiment shows that this model would be appropriate for a

“real” IE task. Moreover, regarding point 1), it has been pointed out (by for example,

Lafferty et al., 2001) that conditionally structured models suffer from the label bias

problem which is a dysfunctional behavior, the “explaining away” phenomenon, that

essentially favors state sequences that have no relations with the actual observations.

In other words, when the state at time t− 1 explains “very well” the state at time t,

then the observation at time t is ignored.

Lafferty et al. (2001) propose a conditional random field model to address this

problem. Conditional random field models are indirect graphical models that have

a single exponential model for the joint probability of the entire sequence of states

given the observations, P (s0, s1, ...sT | o0, ...oT ).8 The claim is that the weights of

the different features at different states can be traded off against one other, therefore

avoiding the label bias problem. They apply this model to synthetic data and to a

part-of-speech tagging task. McCallum and Li (2003) applied this model to named

entity extraction on the CoNLL-03 shared task.

Borthwick et al. (1998) use the maximum entropy model for the task of Named

Entity recognition. The results reported are very good (F-measure of 97.12%) for the

MUC-7 corpus (25 articles mainly on aviation disasters) but it is not clear what the

role of the maximum entropy models was versus that of the inclusion of a rich pool

of features.9

8In contrast, MEMM models T conditional probabilities P (st | ot, st−1).
9They use binary features (such as “the token begins with a capitalized letter,” “the token

contains a number”), lexical features, section features, dictionary features (they use 8 dictionaries)
and external features (i.e., features provided by -3- external systems, like the predictions for the
named entities made by these external systems).
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3.2.2.5 Parsing Models

“Parsing Models” are models that incorporate both syntactic and semantic informa-

tion in the models themselves (as opposed to, for example, the syntactic information

being a feature), usually by augmenting the parse tree with semantic labels on the

tree nodes.

Miller et al. (2000) use the syntactically annotated Penn Treebank corpus and

annotate the semantics (in terms of both entities and relationships) on top of it.

They call their model the “sentence-level model.” They first train this model on

the purely syntactic Treebank trees. Then, for each sentence of the semantically

annotated corpus, they:

1. Apply the sentence-level model to syntactically parse the tree, constraining the

model to produce only parses that are consistent with the semantic annotation

(for example, by prohibiting the model to produce parses for which a semantic

constituent would be broken up by the syntactic constituents).

2. Augment the resulting tree to reflect both the syntactic and semantic struc-

ture (for example, by inserting nodes that describe the named entities or the

arguments to the relations).

3. Retrain the sentence-level model on the augmented tree. At this point they

have an integrated model of syntax and semantics.

They define the “structure” of the model by deciding, for example, that the categories

for the head constituents depend only on the categories of the parent node, and that

the part-of-speech-tags for a modifier depend on the category of the modifier, on

the part-of-speech tag of the head-word and on the head-word itself. They train the

model with ML estimates and smoothing and apply dynamic programming to find

the most likely parse tree given a new sentence. They also apply this model to the
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MUC-7 corpus and report an F-measure of 83% for the entity extraction and 64% for

the relationship extraction.

Chelba and Mahajan (2001) use a very similar model that integrates syntactic and

semantic information; a syntactic parser is trained to match the semantic constituents

and then used to recover the most likely parse tree (and therefore the semantic la-

bels, since the tree is augmented with semantic tags) given test sentences. Collins

and Miller (1997) use a probabilistic context free grammar for the task of IE in the

management succession domain of MUC-6.10 They assume that the state sequence

is generated by the application of r context-free rules LHSi ⇒ RHSi
11 and that

P (s1s2...sn) =
∏

i=1..r P (RHSi | LHSi). They recover the (quite complex) underly-

ing tree structure from the training data labels and they use ML estimates for all the

rules (with a backing-off smoothing); they report an accuracy of 77.5%.

Gildea and Jurafsky (2002) separate the tasks of parsing and entity extraction.

They first run a parser on the text and then use the features obtained from the

parser (such as phrase type, grammatical function, voice and the head word) to find

the probability of a semantic role given these features; they extract FrameNet roles

(Baker et al., 1998).

3.2.3 Relation Recognition

Relation recognition is the task of recognizing the relationships between entities.

If between two semantic entities only one relationship is possible, then the task of

relation recognition essentially coincides with the task of entity extraction. While

this may be true with some approximation for certain entities, the most interesting

case is when two or more entities can be in several different relations and we need to

10The entities extracted are the position, the person leaving the position and the person coming
into the position.

11LHS is the left hand side and RHS is the right hand side.
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distinguish between those (like my examples for TREAT and DIS in Sections 3.3).

Most of the related work in this field does not consider this case: sometimes co-

occurrences of entities are found and the relation is implied, as in Ray and Craven

(2001), (reducing therefore this task to the related problem of entity extraction);

similarly, the ACE competition12 has a relation recognition subtask, but assumes

a particular type of relation holds between particular entity types (e.g., if the two

entities in question are an EMP and an ORG, then an employment relation holds

between them; which type of employment relation depends on the type of entity, e.g.,

staff person vs. partner).

The related work on relation classification can (roughly) be divided into three

approaches, (i) rules and templates to match linguistic patterns, (ii) co-occurrences

of entities and (iii) machine learning methods.

In the BioNLP literature, there have recently been a number of attempts to au-

tomatically extract protein-protein interactions from bio-medical text; Chapter 4 de-

scribes my work in this field.

Some approaches simply report that a relation exists between two proteins but

do not determine which relation holds (Bunescu et al., 2005; Marcotte et al., 2001;

Ramani et al., 2005), while most others start with a list of interaction verbs and label

only those sentences that contain these trigger verbs (Blaschke and Valencia, 2002;

Blaschke et al., 1999b; Rindflesch et al., 1999; Thomas et al., 2000; Sekimizu et al.,

1998; Ahmed et al., 2005; Phuong et al., 2003; Pustejovsky et al., 2002). However,

as Marcotte et al. (2001) note, “... searches for abstracts containing relevant key-

words, such as “interact*13”, poorly discriminate true hits from abstracts using the

words in alternate senses and miss abstracts using different language to describe the

interactions.”

12http://www.itl.nist.gov/iaui/894.01/tests/ace/
13Where the character “*” matches everything beginning with the string interact.
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Most of the existing methods also suffer from low recall because they use hand-

built specialized templates or patterns (see next section). Moreover, as Blaschke and

Valencia (2002) note, most approaches use pre-defined lists of protein names rather

than deal with the difficult problem of protein name recognition. In most cases,

papers evaluate on their own test set, and so it is quite difficult to compare systems.

3.2.3.1 Rule-based and pattern systems for relation classification

In the bioscience domain the work on relation classification is primary done through

hand-built rules. Feldman et al. (2002) use hand-built rules that make use of syntactic

and lexical features and semantic constraints to find relations between genes, proteins,

drugs and diseases. The GENIES system (Friedman et al., 2001) uses a hand-built

semantic grammar along with hand-derived syntactic and semantic constraints, and

recognizes a wide range of relationships between biological molecules. An evaluation

comparing their system to an expert’s assessment of 57 test sentences containing

binary relations (all taken from one article, so on a focused topic) yielded a precision

of 96%. Examples of templates are: P1[(,CC DT)|,(IN)|:|;]P2 (Ono et al., 2001) or

’interaction of’ (PROTEIN 1) ’and’ (PROTEIN 2) (Corney et al., 2004). Some

systems use link grammars in conjunction with trigger verbs instead of templates

(Ahmed et al., 2005; Phuong et al., 2003).

Pustejovsky et al. (2002) extract inhibit-relations. Automata were developed for

the extraction of the entities and the relation from a shallow parsed representation

of the text. A precision of 94% and a recall of 58.9% are reported. The experiments

were based on 95 sentences from MEDLINE that contained verbal and nominal forms

of the stem inhibit. Note that therefore, the real task here is to extract entities that

are connected by some form of the stem inhibit, which is arguably different from the

extraction of entities in the inhibit-relation, if there are other linguistic ways to express

this relation (but Pustejovsky et al., 2002, do not discuss this issue). Focusing on one
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very specific syntactic structure can result in a system with very few false positives

(i.e., high precision), which is what we may want in some cases, however, such a

system will also have poor recall.

In Saric et al. (2004), the goal is to find all the proteins that are responsible for

regulating the expression of which genes, i.e., the relation is fixed and the systems

is supposed to find all its instances; they use finite state automata and report an

accuracy of 83% but no information about recall.

Ng and Wong (1999) also develop a set of rules that models very simple sentence

patterns (“A inhibits B, C, and D,” “A, an activator of B, ...”) for the extraction

of protein-protein interactions, again, given a fixed list of key function words. Fried-

man et al. (2001) is more complex than Ng and Wong (1999) and has a broader set

of biological relations but the underlying method is the same: manually developed

grammar rules to recognize well-formed patterns and to generate target output.

Blaschke et al. (1999b) claim to extract protein-protein interactions, but impose

a number of very strong assumptions: both protein names are specified by users14 and

an instance of a set of 14 pre-specified words (such as activate, interact, suppress)

must be present. If these conditions are met, the extraction is done by simple rules.

For more general text, Agichtein and Gravano (2000) describe strategies for gen-

erating patterns to extract pairs of entities in a given relationship. For example,

the goal is to extract pairs such as (Microsoft, Redmond), meaning that Redmond is

the location of the organization Microsoft. Given an initial set of example pairs, the

system analyses the context (pattern) in which these pairs occur, and from this set

of initial patterns, the system finds new pairs, from which new context patterns are

generated and so on (see Section 3.2.5.4 for a discussion of the bootstrapping process).

In this paper it is assumed that the two entities LOCATION and ORGANIZATION

14 This system, therefore, would not solve the important problem of finding all proteins related
to one given protein.
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are always in the same relation, which can be true for this specific case, but is not

generally applicable. Similarly to the work in Craven and Kumlien (1999), as long

as they identify one example of a pair, they consider the system to be correct for

that pair. This is different from the goal of IE, in which all instances have to be

retrieved; for this reason, they introduce a metric that is different from the standard

metric in IE (see Agichtein and Gravano, 2000, for details). The system relies on pairs

appearing multiple times in the document collection. Different results are reported

depending on the number of occurrences of such pairs: 85% precision and 80% recall

for 1 occurrence of the pairs and 90% precision and 85% recall and for 10 occurrence

of the pairs.

3.2.3.2 Co-occurrence for relation classification

Stapley and Benoit (2000) hypothesize a functional relationship between genes that

occur together in the same document with statistically significant frequency. A graph

is generated, with edges between pairs of genes. The lengths of the edges are a

function of the co-occurrence of the couples in the literature. Stapley and Benoit

(2000) claim that the type of the relationships are implicitly represented graphically

by the clustering of genes with related functions.

In Stephens et al. (2001), a relationship between a pair of genes (taken from a

fixed list) is predicted if there is a strong association between them, measured as

co-occurrence; in other words, if two genes co-occur frequently in a collection, then a

relationship between them is predicted. This method would not work for rare events

that may be the most interesting cases (at least for the task of knowledge discovery). If

a relationship is predicted, it is classified by looking up a list of predefined relationship

keywords (activates, binds, transports).
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3.2.3.3 Machine learning systems for relation classification

Zelenko et al. (2002) introduce kernel methods for the task of relation classification.

The input is a shallow parse of the sentence with noun phrases and names tagged with

the relevant entity tags. Kernels are defined over the shallow parses and Support Vec-

tor Machine and Voted Perceptron algorithms are used for the classification over the

kernels. The task is to extract the relationships person-affiliation and organization-

location. They compare their results with those of some feature methods (such as

Naive Bayes) and report superior performance of the kernel methods (F-measure of

86.8% for person-affiliation and 83.3% for organization-location versus respectively

82.93% and 80.4% for the Naive Bayes).

Culotta and Sorensen (2004) create dependency trees for each entity pair (repre-

sentations that denotes grammatical relations between words in a sentence); a relation

instance is a dependency tree. Kernel functions are defined over these trees and sup-

port vector machines used for the classification. The experiments were done on the

ACE data, with five relation types; they report an F-measure of 45%.

For the bio-medical domain, Craven (1999) tackles the problem of relationship

extraction from MEDLINE (for the relation subcellular-location) also as a problem of

text classification and uses a Naive Bayes for the classification. They assume that

semantic labels are given to the words15 and a relation is assigned to a sentence if

the sentence contains words belonging to the semantic classes of interest and if a

classifier classifies the sentence as a positive example. They propose and compare

two classifiers: a Naive Bayes classifier with a bag-of-words representation and a

relational learning algorithm that learns relational rules in terms of a (shallow) parsed

representation of the text. The results reported are: a precision of 78% and a recall

15It is not described how these semantic labels, PROTEIN and SUBCELLULAR-STRUCTURE,
were assigned.
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of 32%16 for an F-measure of 45.3% for the Naive Bayes and a a precision of 92% and

a recall of 21% (34.1% F-measure) for the relational learning.17

They do not mention if these semantic classes can be related by another functional

relationship. They classify sentences into two groups: those that have these entities

in this relation and all the other. It would have been interesting to see a three-

(at least)-way classification: (i) sentences with PROTEIN and SUBCELLULAR-

STRUCTURE in the subcellular-localization relation, (ii) sentences with PROTEIN

and SUBCELLULAR-STRUCTURE in another relation (iii) all other sentences. It

would have been interesting to see how (i) differs from (ii). They do have a baseline

system that predicts that this relation holds if a PROTEIN and a SUBCELLULAR-

STRUCTURE occur in the same sentence. This system has an F-measure of 51%

approximately,18 meaning that there are indeed instances of other relations between

these two entities but unfortunately examples of such cases are not reported.

HMMs also have been proposed for this task: Palakal et al. (2002) distinguishes

between directional relationships (for which it is important to know the direction of

the action, as in “protein A inhibits protein B”) and hierarchical relationships for

which the direction is not needed, as for “the brain is part of the nervous system”19

and classify them with two different methods.20 Directional relationships are classified

16These numbers are taken (by me) from a graph but never appear in the text and therefore are
approximate.

17Note also that they have a somewhat “forgiving” evaluation policy: they say that “although
each instance of the target relation may be represented multiple times in the corpus, we consider the
IE-method to be correct as long as it extracts this instance from one of its occurrences.” This could
be fine for certain applications, however, I believe that for many applications it may be important
to return all the articles that talk about a certain relation.

18The F-measure of 51% is at 71% recall, for which value the results of the Naive Bayes are not
reported, but at the same level of recall of about 32%, the Naive Bayes achieves 78% precision, while
the sentence co-occurrence baseline achieves 40% precision.

19It is not clear to me why it is so, in fact, we could also find: “the brain belongs to the nervous
system” in which the direction is not symmetric; we could assume that we have a hierarchical
ontology from which we can extract the information of the “hierarchical directionality” but this is
not mentioned in the paper.

20There is no discussion on how the system is supposed to distinguish between the two kinds of

91



Chapter 3. Role and relation identification

using an HMM model (that finds the state sequence, therefore distinguishing between

the “agent” and the “patient” entities). The model was trained using four directional

relationships: inhibit, activate, binds and same but it is not clear how (and if) it

also classifies the different relationships or if it only finds the state sequence. Palakal

et al. (2002) claim that for hierarchical relationships the verb is not important and

that therefore this type of relationship can be defined using co-occurrence; the method

used is the same as Stephens et al. (2001).

Ray and Craven (2001) apply an HMM to extract the entities PROTEINS and

LOCATIONS in the relationship subcellular location and the entities GENE and DIS-

ORDER in the relationship disorder-association. Ray and Craven (2001) acknowledge

that the task of extracting relations is different from the task of extracting entities

(because entities can be in different relationships with each other) but then they con-

sider (MEDLINE) sentences that contain words that match target tuples collected

from two databases21 to be positive sentences. This essentially means that the pos-

itive sentences are all the sentences that contained the entities no matter in which

relationship the entities were in. The actual task is therefore the one of entity ex-

traction. They do acknowledge the problem with this approach and they report that

approximately 10% to 15% of the sentences are labeled incorrectly but unfortunately

there is no discussion of how the sentences with entities in the relationships of interest

differ from the sentences in which the entities are in another relationship and what

other relations occur between these entities (but see Section 3.2.2 for a description of

their interesting model).

relationships.
21Yeast protein Database (YPD) for subcellular location and the OMIM database for disorder-

association.
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3.2.4 Syntactic information

Another dimension along which we can analyze IE systems is the amount of syntactic

information they make use of.

Systems that tackle structured (or semi-structured) text do not usually use any

syntactic information. HTML and SGML tags can help the identification of the

constituents; some systems also use format information (position on the web page,

font, colors, new-line, etc.). These features are easier to include in a statistical system,

are usually more accurate than syntactic information and the space they define is

much smaller. Blei et al. (2002) use formatting, layout, directory structures, and

linkage information to extract job descriptions from Web pages. The intuition is

that: “if one wished to extract the titles of all the books on Amazon.com, one can

rely on the fact that the book title appears in the same location on the books home

page and in the same font.” McCallum et al. (2000) use only line-based features for

the talk of extracting certain fields from Usenet FAQs.

One may think that syntactic information for systems that tackle free text should

be necessary, however, many IE systems do not use any (see, for instance Freitag

and McCallum, 2000; Bikel et al., 1999; Borthwick et al., 1998). In these cases, the

features can be the words themselves, word-based features, like for example, “word

contains a digit,” “word is a two-digit number” like in Bikel et al. (1999), and semantic

features (like dictionary features).

Klein et al. (2003) propose a character level HMM (the observations are the char-

acters) and a character level maximum entropy markov model for the task of named

entity recognition; the reason to do so is to address the problem of data sparsity. Inter-

estingly, they report a significant error reduction switching from word-based models

to the character based ones.

For systems that do use syntactic information, on one end of the spectrum we
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find systems that use only part-of-speech tags (Collins and Miller, 1997), on the

other, systems that use complete parse trees (Gildea and Jurafsky, 2000; Miller et al.,

2000; Chelba and Mahajan, 2001). In between, there are the systems that use only

“shallow” or “flat” syntactic information.

AutoSlog-TS (Riloff, 1996), for example, uses a syntactic parser to produce a shal-

low parse tree that segments sentences into noun phrases, prepositional phrases and

verb phrases and finds some basic grammatical functions (subject, object) and the

voice of the verbs.22 Ray and Craven (2001) incorporate phrase-constituent informa-

tion in a HMM, representing a sentence as a sequence of phrases (see the discussion

of this paper in Section 3.2.2.2). It is difficult to understand the impact of the syntac-

tic representation, since these systems have very different models, different features,

different and training procedures.

It would be interesting to understand what “level” of syntactic information should

be used and under what circumstances. The following papers address this problem.

Ray and Craven (2001) compare a “phrase” model with two “token” models, one

that includes the part-of-speech of the words and one with only words and no syn-

tactic information (keeping fixed the statistical model, an HMM, see Section 3.2.2.2);

they report better results for the “phrase” model suggesting that there is value in

representing the grammatical function for the task of IE.

Gildea and Palmer (2002) compare a “flat,” “phrase” model with a full parser

model; it examines how the information provided by modern statistical parsers, such

as Collins (1997) and Charniak (1995), contribute to solving IE. They measure the

effect of the parser accuracy and determine whether a complete parse tree is necessary

for accurate role prediction in IE for free text from the Propbank corpus. They use

the system described in Gildea and Jurafsky (2000) that passes sentences through

22To distinguish, for example, the patterns “VICTIM passive-verb by OFFENDER” versus “OF-
FENDER active-verb VICTIM.”
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an automatic parser, extracts syntactic features from the parser and estimates the

probabilities for the semantic roles from the syntactic and lexical features (in other

words, it calculates the probability of a semantic role given the features and chooses

the role that maximizes this probability). The features used are the following: Phrase

Type (NP, VP, S), Parse Tree Path (the path from the predicate through the parse tree

to the constituent in question; this feature is designed to capture the syntactic relation

of a constituent to the predicate), Position (whether the constituent to be labeled

occurs before or after the predicate; this feature is highly correlated with grammatical

function), Voice and Head Word. They test the hypothesis that features based on

a full parser are useful for IE by comparing their tree-based system with a system

which is given only a flat, “chunked” representation of the input sentence. They report

better results with the complete parse based system: 57.7% precision and 50% recall

of the full parse system (53.6% F-measure) versus 49.5% precision and 35.1% recall

(41% of F-measure) for the chunked representation. They conclude that this shows

that the constituent structure provided by the statistical parser provides relevant

information for IE. They also show that head word information (a side product of

the parser) improves the results. To the best of my knowledge, this is the first paper

that tackles this problem explicitly, and it does seem to provide some evidence for its

claim. However, the comparison does not seem to be completely fair. Much work was

done to develop the full parse based system (and 2 papers written about it), while

the IE system using the flat representation is very simple and (apparently) developed

only for a comparison for this paper. In other words, it is not entirely clear to me

whether the flat representation is to be claimed for the worse performance or the IE

system built in top of it.

Xue and Palmer (2004) show that the syntactic information has yet to be fully

exploited and that different features are needed for different subtasks (argument iden-

tification and argument classification); they propose a set of syntactic features and
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show how these features lead to a significant improvement; the task was the semantic

annotation of Proposition Bank (Kingsbury and Palmer, 2002).

3.2.5 Using unlabeled data

One major problem of natural language processing is the sparsity of data; linguistic

patterns occur in a very skewed distribution, with a small number of events occurring

very frequently and a long “tail” of events occurring very rarely (the Zipf distribution).

Therefore, to accurately learn a linguistic model we need many patterns to cover the

tail and this means that we need to label a large amount of text, which is usually an

expensive requirement.

For information extraction, the labeling process is particularly difficult and time

consuming. Moreover, we need different labeled data for each domain. (In Chapter

4, I address this problem and propose a method to gather data for the task of protein

interaction classification).

In the following sections, I describe the different methods that have been proposed

in this direction.

3.2.5.1 Unsupervised methods

Unsupervised methods do not use labeled data and try to learn a task from the

“properties” of the data. They can be viewed as clustering methods.

In Hasegawa et al. (2004) relations between entities are discovered through a

clustering process; pairs of entities occurring in similar context can be clustered and

each pair in a cluster is an instance of the same relation. They also label the clusters,

with most frequent common words in the cluster being its label. They use an entire

year of the NY Times and report an F-measure of 80% for the 12 relations between

the entities PERSON and GPE and an F-measure of 75% for the 6 relations between
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COMPANY and COMPANY.

Freitag (2004) advocates the combination of supervised learning on a small train-

ing set with features derived from a much larger unlabeled set via a clustering algo-

rithm. F-measures on the extraction of MUC roles show that the use of such features

improves the performance on most roles, typically benefiting the recall.

3.2.5.2 Weakly and distantly labeled data

Seymore et al. (1999) apply the term distantly labeled data to data that was labeled

for another purpose but which can be applied to the problem at hand. Their goal is to

extract fields such as TITLE, ABSTRACT, AUTHOR, EMAIL, INTRODUCTION

from headers of computer science papers. They take advantage of the fact that several

of the labels that occur in citations (such as TITLE and AUTHOR), also occur in the

headers of papers and they use BIB-TEX files to obtained such labeled data (which

constitute the distantly labeled data). They show how this data is useful: its addition

provides a 10.7% improvement in extraction accuracy for headers.

In Craven (1999), weakly labeled data are facts that can be easily extracted and

that may offer some evidence with which we can “label” the (otherwise) unlabeled

text. For example, the goal in Craven (1999) is to extract the relationship subcellular-

location;23 they observe that the Yeast Protein Database (YPD) includes a field

subcellular-location for many proteins and also the references to the MEDLINE arti-

cles containing that relation for those proteins. They assume then that a MEDLINE

abstract that is referenced by instances of this field in YPD contains sentences that

do indeed contain the relation.24 In other words, instead of the hand labeling they use

the reference from YPD. They report a 69% precision at 30% recall (41% F-measure)

23Or, more precisely, to classify sentences into sentences that contain the relationship and sentences
that do not.

24They actually assume that the sentence in that abstract that contain both a PROTEIN and a
LOCATION is the “positive” sentence.
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for a Naive Bayes classifier trained on hand-labeled data and a 77% precision at 30%

recall (43% F-measure) for the same Naive Bayes classifier trained on weakly labeled

data.

3.2.5.3 EM (Semi-supervised learning)

EM (Expectation-Maximization) is one standard approach for learning with missing

values. EM is essentially Maximum Likelihood for unlabeled data, which is usually

a good choice if the model chosen is the “right” model for the data; if, on the other

hand, the model is not the right one, maximizing the likelihood of the data under that

model may not be the right thing to do. This is what seems to happen in Seymore

et al. (1999) where they use an HMM and EM with unlabeled data. They set the

initial parameters to the ML estimates obtained from labeled data and then they run

the Baum-Welch (Baum, 1972) algorithm on the unlabeled data.25 Their results show

how adding unlabeled data to labeled and distantly labeled data does not improve

the results (in terms of classification accuracy) with respect to the results with only

labeled and distantly labeled data. They say that this can be due to the fact that

the Baum-Welch algorithm maximizes the likelihood of the unlabeled data, not the

accuracy of the classification and that this is actually shown by the improvement in

test perplexity (which is a measure of how well the models fits the data).

3.2.5.4 Bootstrapping

Bootstrapping is an iterative process where, given (usually) a small amount of labeled

data (seed-data), the labels for the unlabeled data are estimated at each round of the

process, and the (accepted) labels then incorporated as training data. Jones et al.

(1999) describe one such process. Their IE system relies on two dictionaries: a

25Baum-Welch training essentially produces new parameter estimations that maximize the likeli-
hood of the unlabeled data.
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dictionary of extraction patterns and a semantic lexicon; in Jones et al. (1999) a

bootstrapping technique generates both dictionaries simultaneously. Their approach

is based on the following observations:

1. objects that belong to a semantic class can be used to identify extraction pat-

terns for that class (for example, suppose we know that “terrier” is a DOG,

then given the sentence “the terrier barked” we can extract the pattern “<X>

barked” as representative of the class DOG).

2. (Conversely) extraction patterns that are known to be of a semantic class can

be used to identify new members of that class (for example, knowing that the

pattern “<X> barked” is associated with the class DOG, when we find “the

dalmation barked” we can assume that “dalmation” is DOG).

Their bootstrapping algorithm starts with a small number of seed words that belong

to a semantic class of interest; these seed words are used to learn the extraction

patterns that then can be used to extract new members of the same semantic class.

This process is iterated several times and at each times a score is given to each

extraction pattern and to each new lexicon entry and only the most reliable ones

are retained. They report a precision of 76% for a Web location dictionary and a

precision of 63% for a terrorist location dictionary.

Riloff (1996) is based on the same idea, but the patterns are not only a sequence

of words (like in Jones et al., 1999, ‘shot in <X>,” “to occupy <X>”) but contain

some syntactic information: “<subject> kidnapped” and “exploded on <np>” are

two examples. Agichtein and Gravano (2000) and Yangarber et al. (2000) are again

very similar; Agichtein and Gravano (2000) have a different technique for generating

patterns (and a slight different definition for “pattern”) and a different evaluation

measure and Yangarber et al. (2000) include semantic classes in the definition of

patterns and in the pattern matching procedure.
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Collins and Singer (1999) propose an unsupervised algorithm based on decision

lists and a boosting-based algorithm along with unlabeled data and only seven seed

rules to tackle named entity classification.

Swier and Stevenson (2004) use a verb lexicon (VerbNet), a bootstrapping algo-

rithm and a back-off model to label the arguments of verbs with their semantic roles

(there are 13 roles such as AGENT, AMOUNT, BENEFICIARY, CAUSE, EXPERI-

ENCER). They use the lexicon to assign the initialize the model probabilities.

3.2.5.5 Co-training

As defined in Blum and Mitchell (1998), co-training is a type of bootstrapping for

problems in which “the description of each example can be partitioned into two

distinct views” and for which both (a small amount of) labeled data and (much

more) unlabeled data are available. For their application of classifying Web pages,

one view is the bag-of-words in the Web page and the other in the words that occurs in

the hyperlinks pointing to that page. They train two classifiers (Naive Bayes) on the

labeled data, each classifier using as features only one “view.”26 They assume that the

classification of the 2 classifiers is consistent, that is, that each view itself is sufficient

for a correct classification. After training the two classifiers, they use them to label

unlabeled data. They train again the classifiers with these “self-labeled” examples

and show how the error rate decreases from the error rate obtained using only the

original labeled data, concluding that this is evidence that co-training successfully

use the unlabeled data to out-perform standard supervised training.

In my view, co-training is essentially the one-iteration, probabilistic version of

bootstrapping as defined in Section 3.2.5.4.

26For example, one classifier classifies the Web page given its bag-of-words and the other given its
hyperlink-words.
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3.3 Data and annotation

In this section I describe the data used for my experiments for entity and relationship

classification.

The text was obtained from MEDLINE 2001. I took the first 100 titles and the

first 40 abstracts from the 59 files medline01n*.xml in Medline 2001. The intention

was to retrieve a broad variety of concepts. No keywords of any sort were used to

retrieve the documents.

The annotator, a SIMS masters student with a biology background, looked at

the titles and abstracts separately and did the labeling through the text sentence

by sentence. I decided to concentrate on the semantic roles TREAT and DIS and I

asked the annotator to see how many different types of relationships could be found

between these two roles. She came up with 8 types of relationships (see Section 3.3.1)

and labeled the text accordingly. She writes: “I labeled sentences based solely on

the content of that individual sentence and not other sentences in the same abstract.

Sometimes reading the abstract helped me figure out what was going on in general

especially when the disease or treatment names were obscure or weird or abbrevi-

ated. But overall I tried to ensure that a labeled relation within a sentence was not

dependent on other sentences around it and could stand on its own.”

Riloff (1996) notes how complex the annotation task is, in that it is not always

clear, for example, what constitutes a relevant noun phrase. Should we include all the

modifiers, only the most relevant ones or just the head noun? Determiners? Should

we include prepositional phrases?

I did not specify an exact labeling convention for the noun phrase boundaries, and

this resulted in some inconsistency in the data. For example, for ‘‘ovarian cancer’’

only cancer was labeled to be a DIS but in another sentence with ‘‘breast cancer’’

both words were labeled as DIS; in: ‘‘<DIS> non-recurrent cancer </DIS> of
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the cervix’’27 only non-recurrent cancer was labeled as a DIS but in ‘‘<DIS>

complicated cancer of the large bowel</DIS>’’ the whole phrase was consid-

ered to be a DIS. The reason for this could be due to the different importance and

emphasis of the concepts in the sentences; it could also be the case that these are just

labeling inconsistencies.

In some systems the annotation depends on the syntactic information, as in Gildea

and Palmer (2002).28 In our case, the annotation was done independently of any

syntactic information and with no constraints whatsoever and this also gives rise to

some inconsistency in the labeling; for example, in ‘‘The <DIS> lesion </DIS>

was resected by ...’’ only part of the noun phrase ‘‘The lesion’’ was labeled

as a DIS and the determiner left out, while in ‘‘...<TREAT> the paravertebral

block </TREAT> ...’’ the whole NP was labeled.

I retained the sentences that were found not to contain the entities and rela-

tionships of interest and in my experiments I distinguish between relevant and non-

relevant sentences. The non-relevant sentences come from the same population of

abstracts and titles than the relevant ones, and therefore relevant and non-relevant

sentences can be very similar to one another, in terms of discussing the many of the

same concepts.

A total of 3570 sentences were labeled. Table 3.3 shows the number of sentences

found for each type of relation. These labeled sentences are available at:

http://biotext.berkeley.edu/data.html

27<label> means that the word that follows it is the first of the entity and </label> that the
word that proceeds it is the last of the entity.

28Gildea and Palmer (2002) use Propbank and note that “Propbank annotation takes place with
reference to the Penn Treebank trees - not only are the annotators shown the trees when analyzing a
sentence, they are constrained to assign the semantic labels to portions of the sentence corresponding
to nodes in the tree.”
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Relationship Definition Num.

Cure TREAT cures DIS 810
Only DIS TREAT not mentioned 616
Only TREAT DIS not mentioned 166
Prevent TREAT prevents the DIS 63
Vague Very unclear relationship 36
Side Effect DIS is a result of a TREAT 29
NO Cure TREAT does not cure DIS 4
Complex More than one relation 75

Total relevant 1799

Non-relevant TREAT and DIS not present 1771

Total 3570

Table 3.1: Candidate semantic relationships between treatments and diseases, a short
definition and the total number of sentences found for each relation.

3.3.1 Semantic relationships

In this section, I describe the various types of semantic relations that were found to

occur between the semantic classes of TREAT and DIS and I report a few examples

for each relationship.

3.3.1.1 Cure

For the cure relation, according to the annotator: “To label a sentence as cure the

treatment has to cure the disease or it is meant to cure it but might still be in testing

(e.g. clinical trials). On more thought I wonder if these two relationships should

actually be separated into two relationships. This might be useful due to the obvious

difference between a treatment that has been shown to be effective clinically versus

a treatment that is still being tested or was inconclusive. I decided for the moment

to have only one relation for these two concepts.”

Some examples for this relation are:
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OBJECTIVES: <DIS> Obesity </DIS> is an important clinical

problem, and the use of <TREAT> dexfenfluramine hydrochloride

</TREAT> for weight reduction has been widely publicized since

its approval by the Food and Drug Administration.

<TREAT> Antibiotics </TREAT> prescribed for <DIS> sore throat

</DIS> during the previous year had an additional effect (hazard

ratio 1.69, 1.20 to 2.37).

<TREAT> Intravenous immune globulin </TREAT> for

<DIS> recurrent spontaneous abortion </DIS>.

3.3.1.2 Only Disease

The Only Disease relation is assigned when a treatment is not mentioned in the

sentence (other entities may have been present). Some examples:

The objective of this study was to determine if the rate of

<DISONLY> preeclampsia </DISONLY> is increased in triplet as

compared to twin gestations.

<DISONLY> Down syndrome </DISONLY> (12 cases) and <DISONLY>

Edward syndrome </DISONLY> (11 cases) were the most common

<DISONLY> trisomies </DISONLY>, while 4 cases of <DISONLY>

Patau syndrome </DISONLY> were also diagnosed.

<DISONLY> Chronic pancreatitis </DISONLY> and

<DISONLY> carcinoma of the pancreas </DISONLY>
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3.3.1.3 Only Treatment

The Only Treatment relation is assigned when a disease was not mentioned in the

sentence (other entities may be present). Some examples:

Patients were randomly assigned either <TREATONLY> roxithromycin

</TREATONLY> 150 mg orally twice a day (n = 102) or placebo orally

twice a day (n = 100).

<TREATONLY> Heterologous vaccines: </TREATONLY> proponent

sparks some interest.

Meta-analysis of trials comparing <TREATONLY> antidepressants

</TREATONLY> with active placebos.

3.3.1.4 Prevent

The Prevent relation is assigned when there is a clear implication that a TREAT

will prevent a DIS. This might be inherent in the definition of the treatment, e.g., a

vaccine works by preventing a disease from occurring, or explicitly stated, often with

the words “prevent” or “prevention of.” Also seen is the phrase “reduce incidents,”

“reduce rates of,” or “reduction in rates...” because these also imply that disease

events are being prevented. Examples:

I investigated the hypothesis that <TREAT PREV> an antichlamydial

macrolide antibiotic, roxithromycin </TREAT PREV>, can prevent

or reduce recurrent major ischaemic events in patients with

<DIS PREV> unstable angina </DIS PREV>.
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Immunogenicity of <DIS PREV> hepatitis B </DIS PREV>

<TREAT PREV> vaccine </TREAT PREV> in term and preterm infants.

<TREAT PREV> Modified bra </TREAT PREV> in the prevention of

<DIS PREV> mastitis </DIS PREV> in nursing mothers

3.3.1.5 Side Effect

The Side Effect relation is assigned when a DIS is a result of a TREAT. The cause/effect

relationship should be explicitly stated or at least very clearly implied or hypothe-

sized. Usually in “side effect” sentences there is a time-line element because the DIS

occurs after some TREAT. Examples:

Initially, all eyes that had <TREAT SIDE EFF> optic capture

</TREAT SIDE EFF> without <TREAT SIDE EFF> vitrectomy </TREAT

SIDE EFF> also remained clear, but after 6 months, four of five

developed <DIS SIDE EFF> opacification </DIS SIDE EFF>

Appetite suppressants-most commonly <TREAT SIDE EFF>

fenfluramines </TREAT SIDE EFF> -increase the risk of developing

<DIS SIDE EFF> PPH </DIS SIDE EFF> (odds ratio, 6.3),

particularly when used for more than 3 months (odds ratio, > 20)

The most common toxicity is <DIS SIDE EFF> bone pain </DIS SIDE

EFF>, and other reactions such as <DIS SIDE EFF> inflammation

</DIS SIDE EFF> at the site of <TREAT SIDE EFF> injection

</TREAT SIDE EFF> have also occurred.
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3.3.1.6 Vague

The Vague relation is assigned when a relationship of some sort between a TREAT

and a DIS is implied but not better specified. It can be either a TREAT that affects

a DIS or something associated with the condition of a DIS or, not as often, a DIS

that has some sort of effect on a TREAT. Often these sentences contain phrases such

as “effect on,” “effect of,” “association between,” “changes in,” “following,” “impact

of.” This differs from the regular “cure” because it is not readily apparent that the

TREAT is actually meant to be a direct treatment for the DIS in the sentence. Often

the effect of the TREAT is specifically on some element associated with the DIS itself

like the first example below: the effect of the TREAT, lorazepam, is specifically on

respiratory muscles in people with the DIS, chronic obstructive pulmonary disease,

but the actual kind of effect is not known, and can be either good or bad.

Examples:

Acute effect of <TREAT VAG> lorazepam </TREAT VAG> on

respiratory muscles in patients with <DIS VAG> chronic

obstructive pulmonary disease </DIS VAG>

Comparison of the effects of <TREAT VAG> salmeterol </TREAT VAG>

and <TREAT VAG> ipratropium bromide </TREAT VAG> on exercise

performance and breathlessness in patients with <DIS VAG> stable

chronic obstructive pulmonary disease </DIS VAG>

Impact of postmenopausal <TREAT VAG> hormone therapy </TREAT

VAG> on cardiovascular events and <DIS VAG> cancer </DIS VAG>.

Testing for <DIS VAG> Helicobacter pylori infection </DIS VAG>
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after <TREAT VAG> antibiotic treatment </TREAT VAG>

<DIS VAG> Hyponatremia </DIS VAG> with <TREAT VAG> venlafaxine

</TREAT VAG>

<TREAT VAG> Hormone replacement therapy </TREAT VAG> and <DIS

VAG> breast cancer </DIS VAG>

3.3.1.7 Do NOT Cure

The relation Do Not Cure is assigned when a TREAT that is meant to cure a DIS does

not work. Unfortunately (and, in my view, surprisingly), I found only 4 instances for

this relationship:

More of those initially prescribed <TREAT NO> antibiotics </TREAT

NO> initially returned to the surgery with <DIS NO> sore throat

</DIS NO>.

To avoid medicalising a self limiting illness doctors should avoid

<TREAT NO> antibiotics </TREAT NO> or offer a delayed prescription

for most patients with <DIS NO> sore throat </DIS NO>.

<TREAT NO> Subcutaneous injection of irradiated LLC-IL2 </TREAT

NO> did not affect the growth of preexisting <DIS NO> s.c.

tumors </DIS NO> and also did not improve survival of mice bearing

the <DIS NO> lung or peritoneal tumors </DIS NO>
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Evidence for double resistance to <TREAT NO> permethrin and

malathion </TREAT NO> in <DIS NO> head lice </DIS NO>

3.3.1.8 Complex

I did not include in our experiments these more complex sentences that incorpo-

rate more than one relationship, often with multiple entities or the same entities

taking part in several interconnected relationships. For example, in the first sen-

tence, there is a “cure” relationship between oral fludarabine and the DIS chronic

lymphocytic leukemia but also a “side effect” of the TREAT, progressive multifocal

leukoencephalopathy. In the second one, there is one treatment that cures and one

that does not. I found 75 of such sentences.

<DIS SIDE EFF> Progressive multifocal leukoencephalopathy </DIS

SIDE EFF> following <TREAT> oral fludarabine </TREAT> treatment

of <DIS> chronic lymphocytic leukemia </DIS>.

<TREAT> Intraperitoneal injection of irradiated LLC-IL2 </TREAT>

cured <DIS> pre-existing LLC peritoneal tumors </DIS> and

extended the survival of the mice but did not affect survival

of mice bearing <DIS NO> lung tumors </DIS NO> nor did it affect

the growth of <DIS NO> s.c. tumors </DIS NO>.

3.4 Preprocessing

3.4.1 Analyzing at the Sentence Level

Analysis was done at the sentence level given the empirical results in the bioscience

text analysis literature that suggest this is a proper unit of analysis. For example,
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Ding et al. (2000) compare abstracts, adjacent sentence pairs, sentences and phrases

as processing units for the task of mining interactions among biomedical terms and

show statistically significant differences between them. In particular, they report an

F-measure of 0.729 for the sentences, 0.727 for the abstracts, 0.677 for the phrases

and 0.50 for the sentence pairs.

Cooper and Kershenbaum (2005) manually analyze 65 abstracts about protein-

protein interactions and note how “In all but one case, the interactions were described

in the same sentence, and thus resolving co-reference issues would add only marginally

to the quality of the interaction detections. Thus the fact that two proteins occurred

in the same abstract, but not in the same sentence was not a good metric for the

number of relations we should be able to find.”

Finally, for the task described in Chapter 4, I compared the results of the clas-

sification using only the sentences containing the entities of interest (proteins) with

the results obtained using a larger window: the sentence with the entities along with

the previous and following ones or the three consecutive sentences that contained the

proteins (the proteins could appear in any of the sentences). The results obtained by

using these larger chunks were consistently worse. This evidence supports the choice

of the sentence as an unit of text from which to extract facts.

3.4.2 Preprocessing Steps

Given the labeled text, I passed it through a series of processing steps.

• Sentence splitter: to divide the abstracts and titles into sentences.29

29I wrote a program that splits the text at the periods, unless the periods are part of certain
words (this list was mainly found empirically and contains words such as “e.g.,” “i.e.,” “u.s.,”
“jan.” etc.); I also included a list of honorifics (“mr.,” “mrs.”) taken from another sentence splitter
(http://L2R.cs.uiuc.edu/ cogcomp/cc-software.html).
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• Tokenizer: I used the tokenizer used (and provided) by the The Penn Treebank

Project.30

• Brill’s POS tagger (Brill, 1995).

• Collins parser: for the moment, I use the parser only to get, from its output,

a shallower representation (see next step) (Collins, 1996).

• Shallow parser: given the output of the Collins parser, I wrote a program

that does a simple chunking. For example, given the following sentence

Underutilization of aspirin in older patients with prior

myocardial infraction

the parse tree found by Collins parser is shown in Figure 3.2 and the output of

my chunker for this sentence is the following

( NP [NNS] Underutilization )

( PP [IN] of )

( NP [NN] aspirin )

( PP [IN] in )

( NP [JJR] older [NNS] patients )

( PP [IN] with )

( NP [JJ] prior [JJ] myocardial [NN] infarction )

• Semantic tagging with MeSH As I did for the noun compounds (see Sections

2.6.1 and 2.7.3) I mapped the words into MeSH terms. The mapping of the

previous sentence is the following (keeping the chunked representation):

30http://www.cis.upenn.edu/ treebank/tokenization.html
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Figure 3.2: Parse tree found by Collins parser for the sentence: Underutilization of aspirin
in older patients with prior myocardial infraction

( NP [NNS] Underutilization )

( PP [IN] of )

( NP [NN] aspirin D02.241.223.100.380.800.075,

D02.241.511.390.700.075, D02.755.410.700.075 )

( PP [IN] in )

( NP [JJR] older [NNS] patients M01.643 )

( PP [IN] with )

( NP [JJ] prior [JJ] myocardial [NN] infarction

C23.550.717.489)

(The multiple mapping can be due to lexical ambiguity or just to different

ways of classifying the same concept. Ambiguity, however, is relatively rare
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for this ontology. For this work, I simply retain the first MeSH mapping

for each word, so that, for example, the mapping of aspirin becomes just

D02.241.223.100.380.800.075, but further processing for word sense disam-

biguation is probably needed.)

Different levels of description of the hierarchy may be needed for different words,

or for different parts of the hierarchy (see discussion in Section 2.7) or for

different tasks. For the moment I represent all individual MeSH terms up to

the second level, so that aspirin is mapped to D02.241.

3.5 Features

For each word in the sentence I extract the following features:

• Semantic Role (ROLE) given by the labeling. The possible values are DIS

(disease), TREAT (treatment) and NONE. In Section 3.3.1, I showed how I

labeled the diseases and treatments in sentences with different semantic relations

with different labels. For example, hepatitis B was a <DIS PREV> in

Immunogenicity of <DIS PREV> hepatitis B </DIS PREV> <TREAT

PREV> vaccine </TREAT PREV> in term and preterm infants.

but a <DIS EFFECT> in

Effect of <TREAT EFFECT> interferon </TREAT EFFECT> on <DIS

EFFECT> hepatitis B < /DIS EFFECT>

Keeping these different labels would require a different model for each label or for

each pair of labels (see Section 3.7). For now I assume that all types of diseases

are DIS and all types of treatments are TREAT. In the named entity recognition

task, I extract all TREAT and DIS from the sentences without distinguishing
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between them. In the relationship recognition task, I distinguish between the

different relations, essentially assigning, for example, the label <DIS PREV>

to a <DIS> that occur in a prevention relationship.

• Word (w). The words themselves. I substitute the words that occur less than

3 times with the “unknown” token. I do not do any stemming.

• Part of speech (pos) from Brill’s tagger.

• Phrase Constituent (constChunk). The phrase type from the shallow parse.

The purpose of this feature is to include some “higher level” syntactic informa-

tion into the word-based model. For example constChunk of underutilization

is “np” and constChunk of with is “pp.”

• Belongs to the same chunk as previous word (differentChunks). For ex-

ample for older differentChunks=NO, but for patients differentChunks=YES,

because the word that precedes patients (older) belongs to the same chunk.

• MeSH (mesh). The MeSH mapping of the words

• Domain Knowledge (lab). We know that terms that are mapped to the C

sub-tree in MeSH are usually diseases and that only some of the terms in the

E tree and only some of the G terms in MeSH are treatments; I have identified

all the sub-hierarchies of MeSH that correspond to treatments and the sub-

hierarchy that corresponds to diseases. This allows me to include some domain

knowledge. For example, for infarction (C23.550), lab=dis; lab can have 3

values: disease, treatment and null.

• Morphological Features

– Is number
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– Only part is number

– Is negation

– First letter is capital

– All capital letters

– All non word character

– Contains non word character

I ran the experiments using different combinations of these features.

3.6 Evaluation

For the evaluation of the role extraction task, I use the evaluation scoring from the

MUC Manual.31 Evaluation is done at the word level. The semantic label assigned

by the system is compared to the “true” roles.

In the MUC scoring framework, the evaluation metrics (which they call tallies)

are:

• COR: Correct. The truth and the (system) prediction agree

• INC: Incorrect. Truth and prediction disagree

• MIS: Missing. There was a truth value but no prediction

• SPU: Spurious. There was a prediction but not a truth value (i.e., the truth

value was “null”)

• POS: Possible. The total number of truth values.

POS = COR + INC + MIS

31http://www.itl.nist.gov/iaui/894.02/related projects/muc/muc sw/muc sw manual.html
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• ACT: Actual. The total number of predictions.

ACT = COR + INC + SPU

Given this set of tallies, there are several values calculated in the alignment and final

scoring:

• REC: Recall. A measure of how many of the truth values were produced in the

response:

REC = COR / POS

• PRE: Precision. A measure of how many of the predictions are actually in the

truth:

PRE = COR / ACT

• F-measure: Fβ = ((β2 + 1) ∗ PRE ∗REC)/(β2 ∗ PRE + REC)

If β = 1 PRE and REC are given equal weight. In my experiments, β = 1 and

the F-measure formula reduces to

F1 = (2 ∗ PRE ∗REC)/(PRE + REC)

The goal is to achieve a high F-measure.

Below is a typical output of the alignment. The first column shows the original

token from teh sentence, the second column shows the system’s prediction, the third

is the “true” label, and the last one is the tally, or score, assigned by the evaluation.

A blank means that there was no prediction and/or no true value.

underutilization || || ||

of || || ||

aspirin || TREAT || TREAT || COR

in || || ||
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older || || ||

patients || || ||

with || || ||

prior || || DIS || MIS

myocardial || DIS || DIS || COR

infarction || DIS || DIS || COR

at || || ||

the || || ||

time || || ||

of || || ||

admission || || ||

to || || ||

a || || ||

nursing || TREAT || || SPU

home || || ||

. || || ||

From the tallies of all words in all test sentences I calculate the F-measure precision

and recall measures (results shown in Section 3.7). Note that in my evaluation the

tallies for all words have the same weight. In case of punctuation, for example, I

could have chosen not to include them in the evaluation, but to be more rigorous I

do include them. For example, for the sentence

<TREAT> Mitomycin, ifosfamide, and cisplatin </TREAT> in <DIS>

unresectable non-small-cell lung cancer </DIS>

the alignment found was
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mitomycin || TREAT || TREAT || COR

, || || TREAT || MIS

ifosfamide || TREAT || TREAT || COR

, || || TREAT || MIS

and || || TREAT || MIS

cisplatin || TREAT || TREAT || COR

in || || ||

unresectable || DIS || DIS || COR

non-small-cell || DIS || DIS || COR

lung || DIS || DIS || COR

cancer || DIS || DIS || COR

that is, the system missed the punctuation that was part of the labeled roles. Al-

though punctuation is unimportant for my task, I include all of the tallies in the

evaluation.

For the task of relation classification, I simply calculate the classification accuracy,

which is the percentage of the sentences for which the system prediction is correct.

Craven and Kumlien (1999) and Craven (1999) (and others) have a more “forgiv-

ing” evaluation policy: they say that “although each instance of the target relation

may be represented multiple times in the corpus, we consider the IE-method to be

correct as long as it extracts this instance from one of its occurrences.” This could

be fine for certain applications, however, I believe that for many applications it is im-

portant to return all the articles that talk about a certain relation. In my evaluation

I consider all instances of the target roles.

As mentioned in Section 3.3, the annotation was done independently of any syn-

tactic information and with no constraints whatsoever and this gives rise to some
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inconsistency in the labeling. Correcting this would probably produce better results.

I run the experiments 1) for all sentences that were found to have the semantic

roles of interest (relevant sentences) and 2) for all sentences (relevant + non-relevant),

that is, sentences with semantic roles and sentences with no semantic role of interest.

It is not always clear from the papers in the literature, but my understanding is that

most report the results for only the relevant sentences, omitting an explanation of

how a real system would distinguish between relevant and non-relevant sentences.

As explained in Section 3.7, I not only report the results for the case in which we

include the non-relevant sentences but I also propose a method to distinguish between

relevant and non-relevant ones.

I had a second annotator annotate the relevant sentences. For these, the F-

measures between the 2 annotations was 81% which gives us an upper limit for the

system performance.32

32More precisely, this value is a limit on how much we believe the annotation, assuming the system
in theory can do better given better annotations. However, we expect that if the task is so difficult
that the annotators do not agree, it would be difficult for the system to perform (much) better than
the annotators.

Some examples of the diverging annotations are:

• – Administration of <TREAT> dexamethasone </TREAT> induces <DIS> proteinuria
of glomerular origin </DIS> in mice.

– Administration of <TREAT> dexamethasone </TREAT> induces <DIS> proteinuria
</DIS> of glomerular origin in mice.

• – Both groups received similar <TREAT> antibiotic </TREAT> and <TREAT> in-
sulin </TREAT> treatment.

– Both groups received similar <TREAT> antibiotic and insulin treatment </TREAT>.

• – How long should <TREAT> suction drains </TREAT> stay in after <TREAT>
breast surgery with axillary dissection </TREAT> ?

– How long should suction drains stay in after <TREAT> breast surgery </TREAT>
with <TREAT> axillary dissection </TREAT> ?

• – Mutants of cholera toxin as an effective and safe adjuvant for <TREAT> nasal influenza
vaccine </TREAT>.

– Mutants of cholera toxin as an effective and safe adjuvant for <DIS> nasal influenza
</DIS> <TREAT> vaccine </TREAT>.
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3.7 Models

The goal of this work is twofold: first, to identify the semantic roles DIS and TREAT,

given a natural language sentence (this is a segmentation task), and second to identify

the semantic relation, if any, that holds between them. This section describes the

models and their performance on both entity extraction and relation classification.

The relationships are those described in Section 3.3.1.

I evaluate five generative models (two static and three dynamic) and one dis-

criminative model. Discriminative models learn the probability of the class given

the features. When we have fully observed data and we just need to learn the map-

ping from features to classes (classification), a discriminative approach may be more

appropriate, as shown in Ng and Jordan (2002).

Generative models learn the prior probability of the class and the probability of

the features given the class and are the natural choice in cases with hidden variables

(partially observed or missing data). Since labeled data is expensive to collect, these

models may be useful when no labels are available. However, in this paper I test the

generative models on fully observed data.

3.7.1 Generative Models

In Figure 3.3 I show the three dynamic models and in Figure 3.4 the two static models

that I designed and implemented for these tasks. The nodes labeled “Role” represent

the entities (in this case the choices are DIS, TREAT and NULL) and the node

labeled “Relation” represents the relationship present in the sentence. I assume here

that there is a single relation for each sentence between the entities. The children of

the role nodes are the words and their features, thus there are as many role states as

there are words in the sentence; for each state, the features fi are those mentioned

in Section 3.5. For the static models, this is depicted by the box (or “plate”) which
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is the standard graphical model notation for replication (Spiegelhalter et al., 1996).

For clarity, in Figure 3.5 are the same static models of Figure 3.4 without the plate

notation. One can see that the static models S1 and S2 are missing the transitions

between states. In other words, they do not assume an ordering in the role sequence.

The dynamic models were inspired by prior work on HMM-like graphical models

for role extraction (Bikel et al., 1999; Freitag and McCallum, 2000; Ray and Craven,

2001). These models consist of a Markov sequence of states (usually corresponding

to semantic roles) where each state generates one or multiple observations. Model D1

in Figure 3.3 is typical of these models, but I have augmented it with the Relation

node.

The task is to recover the sequence of Role states, given the observed features.

These models assume that there is an ordering in the semantic roles that can be

captured with the Markov assumption and that the role generates the observations

(the words, for example). All my models make the additional assumption that there

is a relation that generates the role sequence; thus, these models have the appeal-

ing property that they can simultaneously perform role extraction and relationship

recognition, given the sequence of observations. In S1 and D1 the observations are

independent from the relation (given the roles). In S2 and D2, the observations are

dependent on both the relation and the role (or in other words, the relation generates

not only the sequence of roles but also the observations). D2 encodes the fact that

even when the roles are given, the observations depend on the relation. For example,

sentences containing the word prevent are more likely to represent a “prevent” kind

of relationship. Finally, in D3 only one observation per state is dependent on both

the relation and the role, the motivation being that some observations (such as the

words) depend on the relation while others might not (like for example, the parts of

speech). In the experiments reported here, the observations which have edges from

both the role and the relation nodes are the words. (I ran an experiment in which
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Figure 3.3: Dynamic models for role and relation classification.
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Figure 3.4: Static models for role and relation classification.
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Figure 3.5: Static models of Figure 3.4 without the plate notation. Note how the
transitions between the role nodes are missing.
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this observation node was the MeSH term, obtaining similar results.)

Model D1 defines the following joint probability distribution over relations, roles,

words and word features, assuming the leftmost Role node is Role0, and T is the

number of words in the sentence:

P (Rel, Role0, .., RoleT , f10, .., fn0, ..., f1T , .., fnT )

= P (Rel)P (Role0 | Rel)
n∏

j=1

P (fj0 | Role0) (3.1)

T∏
t=1

P (Rolet | Rolet−1, Rel)
n∏

j=1

P (fjt | Rolet)

Model D1 is similar to the model in Thompson et al. (2003) for the extraction of

roles, using a different domain. Structurally, the differences are (i) Thompson et al.

(2003) has only one observation node per role and (ii) it has an additional node “on

top,” with an edge to the relation node to represent a predicator “trigger word” which

is always observed; the predicator words are taken from a fixed list and one must be

present in order for a sentence to be analyzed.

The joint probability distributions for D2 and D3 are similar to Equation (1)

where I substitute the term
∏n

j=1 P (fjt|Rolet) with
∏n

j=1 P (fjt|Rolet, Rel) for D2

and P (f1t|Rolet, Rel)
∏n

j=2 P (fjt|Rolet) for D3. The parameters P (fjt|Rolet) and

P (fj0|Role0) of Equation (1) are constrained to be equal.

The joint probability distribution for the static model S1 of Figure 3.4 is the

following:
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P (Rel, Role0, .., RoleT , f10, .., fn0, ..., f1T , .., fnT )

= P (Rel)
T∏

t=1

P (Rolet | Rel)
n∏

j=1

P (fjt | Rolet) (3.2)

where I substitute the term
∏n

j=1 P (fjt|Rolet) with
∏n

j=1 P (fjt|Rolet, Rel) for S2.

The parameters were estimated using maximum likelihood on the training set; I

also implemented a simple absolute discounting smoothing method (Zhai and Lafferty,

2001) that improves the results for both tasks.

Table 3.2 shows the results (F-measures) for the problem of finding the most likely

sequence of roles given the features observed. In this case, the relation is hidden and I

marginalize over it.33 I experimented with different values for the smoothing discount

factor ranging from a minimum of 0.0000005 to a maximum of 10; the results shown

fix the smoothing factor at its minimum value. I found that for the dynamic models,

for a wide range of smoothing factors, I achieved almost identical results. By contrast,

the static models were more sensitive to the value of the smoothing factor.

Using maximum likelihood with no smoothing, model D1 performs better than

D2 and D3. This was expected, since the parameters for models D2 and D3 are more

sparse than D1. However, when smoothing is applied, the three dynamic models

achieve similar results. Although the additional edges in models D2 and D3 did not

help much for the task of role extraction, they did help for relation classification,

discussed next. Model D2 achieves the best F-measures: 0.73 for “only relevant” and

0.71 for “rel. + non-rel.”; the inter-annotator agreement was a F-measure of 0.81 for

“only relevant” which gives us an upper limit of the F-measure.

33To perform inference for the dynamic model, I used the junction tree algorithm. I used Kevin
Murphy’s BNT package:
http://www.cs.ubc.ca/ murphyk/Software/BNT/bnt.html
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Sentences Static Dynamic
S1 S2 D1 D2 D3

No Smoothing
Only rel. 0.67 0.68 0.71 0.52 0.55

Rel. + non-rel. 0.61 0.62 0.66 0.35 0.37
Absolute discounting

Only rel. 0.67 0.68 0.72 0.73 0.73
Rel. + non-rel. 0.60 0.62 0.67 0.71 0.69

Table 3.2: F-measures for the models of Figures 3.4 and 3.3 for role extraction.

It is difficult to compare results with the related work since the data, the semantic

roles and the evaluation are different; in Ray and Craven (2001) however, the role

extraction task is quite similar to mine and the text is also from MEDLINE. They re-

port approximately an F-measure of 32% for the extraction of the entities PROTEINS

and LOCATIONS, and an F-measure of 50% for GENE and DISORDER.

The second target task is to find the most likely relation, i.e., to classify a sentence

into one of the possible relations. Two types of experiments were conducted. In the

first, the true roles are hidden and I classify the relations given only the observable

features, marginalizing over the hidden roles. In the second, the roles are given and

only the relations need to be inferred. Table 3.3 reports the results for both conditions,

both with absolute discounting smoothing and without.

Again model D1 outperforms the other dynamic models when no smoothing is

applied; with smoothing and when the true roles are hidden, D2 achieves the best

classification accuracies. When the roles are given D1 is the best model; D1 does

well in the cases when both roles are not present. By contrast, D2 does better than

D1 when the presence of specific words strongly determines the outcome (e.g., the

presence of “prevention” or “prevent” helps identify the Prevent relation).

The percentage improvements of D2 and D3 versus D1 are, respectively, 10% and

6.5% for relation classification and 1.4% for role extraction (in the “only relevant,”
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Sentences Input B Static Dynamic NN
S1 S2 D1 D2 D3

No Smoothing
Only rel. only feat. 46.7 51.9 50.4 65.4 58.2 61.4 79.8

roles given 51.3 52.9 66.6 43.8 49.3 92.5
Rel. + non-rel. only feat. 50.6 51.2 50.2 68.9 58.7 61.4 79.6

roles given 55.7 54.4 82.3 55.2 58.8 96.6
Absolute discounting

Only rel. only feat. 46.7 51.9 50.4 66.0 72.6 70.3
roles given 51.9 53.6 83.0 76.6 76.6

Rel. + non-rel. only feat. 50.6 51.1 50.2 68.9 74.9 74.6
roles given 56.1 54.8 91.6 82.0 82.3

Table 3.3: Accuracies of relationship classification for the models in Figures 3.4 and 3.3
and for the neural network (NN). For absolute discounting, the smoothing factor was fixed
at the minimum value. B is the baseline of always choosing the most frequent relation.
The best results are indicated in boldface.

“only features” case). This suggests that there is a dependency between the obser-

vations and the relation that is captured by the additional edges in D2 and D3, but

that this dependency is more helpful in relation classification than in role extraction.

For relation classification the static models perform worse than for role extraction;

the decreases in performance from D1 to S1 and from D2 to S2 are, respectively (in

the “only relevant,” “only features” case), 7.4% and 7.3% for role extraction and

27.1% and 44% for relation classification. This suggests the importance of modeling

the sequence of roles for relation classification.

To provide an idea of where the errors occur, Table 3.4 shows the confusion ma-

trix for model D2 for the most realistic and difficult case of “rel + non-rel.,” “only

features.” This indicates that the algorithm performs poorly primarily for the cases

for which there is little training data, with the exception of the ONLY DISEASE

case, which is often mistaken for CURE.
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3.7.2 Neural Network

To compare the results of the generative models of the previous section with a dis-

criminative method, I use a neural network (NN), using the Matlab package to train

a feed-forward network with conjugate gradient descent.

The features are the same as those used for the models in Section 3.7.1, but are

represented with indicator variables. That is, for each feature I calculated the number

of possible values v and then represented an observation of the feature as a sequence

of v binary values in which one value is set to 1 and the remaining v − 1 values are

set to 0.

The input layer of the NN is the concatenation of this representation for all fea-

tures. The network has one hidden layer, with a hyperbolic tangent function. The

output layer uses a logistic sigmoid function. The number of units of the output layer

is fixed to be the number of relations (seven or eight) for the relation classification

task and the number of roles (three) for the role extraction task. The network was

trained for several choices of numbers of hidden units; I chose the best-performing

networks based on training set error. I then tested these networks on held-out testing

data.

The results for the neural network are reported in Table 3.3 in the column labeled

NN. These results are quite strong, achieving 79.6% accuracy in the relation clas-

sification task when the entities are hidden and 96.9% when the entities are given,

outperforming the graphical models. Two possible reasons for this are: as already

mentioned, the discriminative approach may be the most appropriate for fully la-

beled data; or the graphical models I proposed may not be the right ones, i.e., the

independence assumptions they make may misrepresent underlying dependencies.

It must be pointed out that the neural network is much slower than the graphical

models, and requires a great deal of memory; I was not able to run the neural network
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Prediction Relation
Truth V OD NC C P OT SE Irr. accuracy
Vague (V) 0 3 0 4 0 0 0 1 0
Only DIS (OD) 2 69 0 27 1 1 0 24 55.6
No Cure (NC) 0 0 0 1 0 0 0 0 0
Cure (C) 2 5 0 150 1 1 0 3 92.6
Prevent (P) 0 1 0 2 5 0 0 5 38.5
Only TREAT (OT) 0 0 0 16 0 6 1 11 17.6
Side effect (SE) 0 0 0 3 1 0 0 1 20
Non-relevant 1 32 1 16 2 7 0 296 83.4

Table 3.4: Confusion matrix for the dynamic model D2 for “rel + non-rel.,” “only
features.” In the last column the classification accuracies for each relation. The total
accuracy for this case is 74.9%.

package on my machines for the role extraction task, when the feature vectors are very

large. The graphical models can perform both tasks simultaneously; the percentage

decrease in relation classification of model D2 with respect to the NN is of 8.9% for

“only relevant” and 5.8% for “relevant + non-relevant.”

I should also point out that the neural network has a hidden layer which is re-

sponsible for significantly expanding the class of functions that it is able to fit to

data. The graphical models that we have explored are more limited. Indeed, these

models are parametric while the neural networks are nonparametric. It’s not clear if

the superior performance of the neural network is due to its discriminative nature or

to its nonparametric nature. To perform a fair comparison in terms of generative ver-

sus discriminative approaches, parametric discriminative models (e.g., those lacking

a hidden layer, such as a perceptron) should be tried on this data.

3.7.3 Features impact

In order to analyze the relative importance of the different features, we performed

both tasks using the dynamic model D1 of Figure 3.3, leaving out single features and
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Relation Num. Sent.
Train, Test

Vague 28, 8
Only DIS 492, 124
No Cure 3, 1
Cure 648, 162
Prevent 50, 13
Only TREAT 132, 34
Side effect 24, 5
Non-relevant 1416, 355

Table 3.5: The numbers of training and testing sentences for each relation.

sets of features (grouping all of the features related to the MeSH hierarchy, meaning

both the classification of words into MeSH IDs and the domain knowledge as defined

in Section 3.4). The results reported here were found with maximum likelihood (no

smoothing) and are for the “relevant only” case; results for “relevant + non-relevant”

were similar.

For the role extraction task, the most important feature was the word: not using

it, the GM achieved only 0.65 F-measure (a decrease of 9.7% from 0.72 F-measure

using all the features). Leaving out the features related to MeSH the F-measure

obtained was 0.69% (a 4.1% decrease) and the next most important feature was the

part-of-speech (0.70 F-measure not using this feature). For all the other features, the

F-measure ranged between 0.71 and 0.73.

For the task of relation classification, the MeSH-based features seem to be the

most important. Leaving out the word again lead to the biggest decrease in the

classification accuracy for a single feature but not so dramatically as in the role

extraction task (62.2% accuracy, for a decrease of 4% from the original value), but

leaving out all the MeSH features caused the accuracy to decrease the most (a decrease

of 13.2% for 56.2% accuracy). For both tasks, the impact of the domain knowledge
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alone was negligible.

As described in Section 3.4, words can be mapped to different levels of the MeSH

hierarchy. Currently, I use the “second” level, so that, for example, surgery is mapped

to G02.403 (when the whole MeSH ID is G02.403.810.762). This is somewhat arbi-

trary (and mainly chosen with the sparsity issue in mind), but in light of the impor-

tance of the MeSH features it may be worthwhile investigating the issue of finding

the optimal level of description. (This can be seen as another form of smoothing.)

3.8 Conclusions

I have addressed the problem of distinguishing between several different relations

that can hold between two semantic entities, a difficult and important task in natural

language understanding. Because there is no existing gold-standard for this problem,

I have developed the relation definitions of Table 3.3; this however may not be an

exhaustive list. I have presented five graphical models and a neural network for the

tasks of semantic relation classification and role extraction from bioscience text. The

methods proposed yield quite promising results. The graphical models perform these

tasks simultaneously.

The next chapter shows how these models perform for another set of relation

types, protein-protein interactions.
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Labeling protein-protein interactions

4.1 Introduction

Identifying the interactions between proteins is one of the most important challenges

in modern genomics, with applications throughout cell biology, including expression

analysis, signaling, docking, and rational drug design. Most biomedical research is

available electronically, but only in free-text format. Automatic mechanisms are

needed to convert the text into more structured forms.

In this chapter, I address the problem of multi-way relation classification, applied

to identification of the interactions between proteins in bioscience text. I use the

models described in Chapter 3 that were found to achieve high accuracy in the related

task of extracting TREATMENT - DISEASE relations.

Labeling the training and test data is a time-consuming and subjective process.

Here I report on results using an existing curated database, the HIV-1 Human Protein

Interaction Database,1 to train and test the classification systems.

The accuracies obtained by the classification models proposed are quite high,

1www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/index.html
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confirming the viability of the approach.

I also find support for the hypothesis that the sentences surrounding citations are

useful for extraction of key information from technical articles (Nakov et al., 2004).

4.2 Related work

In the BioNLP literature there have recently been a number of attempts to automat-

ically extract protein-protein interactions from PubMed abstracts. Some approaches

simply report that a relation exists between two proteins but do not determine which

relation holds (Bunescu et al., 2005; Marcotte et al., 2001; Ramani et al., 2005), while

most others start with a list of interaction words and label only those sentences that

contain these trigger verbs (Blaschke and Valencia, 2002; Blaschke et al., 1999a; Rind-

flesch et al., 1999; Thomas et al., 2000; Sekimizu et al., 1998; Ahmed et al., 2005;

Phuong et al., 2003; Pustejovsky et al., 2002).

Most of the existing methods also suffer from low recall because they use hand-

built specialized templates or patterns (Ono et al., 2001; Corney et al., 2004). More-

over, often the proteins involved are assumed to be given.

For this work, I use state-of-the-art machine learning methods to determine the

interaction types and also to extract the proteins involved. I do not use interaction

words, templates, or dictionaries.

See Section 3.2 for an in-depth discussion of the related work on role and relation

extraction.

4.3 Data

I use the information from a domain-specific database to gather labeled data for the

task of classifying the interactions between proteins in text. The HIV-1 Human Pro-
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tein Interaction Database provides a summary of documented interactions between

HIV-1 proteins and host cell proteins, other HIV-1 proteins, or proteins from disease

organisms associated with HIV or AIDS. This database is manually curated. I use

this database also because it contains information about the type of interactions, as

opposed to other protein interaction databases (BIND, MINT, DIP, for example2)

that list the protein pairs interacting, without specifying the type of interactions.

The database contains 65 types of interactions and 809 proteins for which there

is interaction information, with a total of 2224 pairs of interacting proteins.

In this database, the definitions of the interactions depend on the proteins involved

(and the articles describing the interaction), thus there are several definitions for

each interaction type.3 As an example, for the interaction bind and the proteins

ANT and Vpr, we find (among others) the definition “Interaction of HIV-1 Vpr with

human adenine nucleotide translocator (ANT) is presumed based on a specific binding

interaction between Vpr and rat ANT”; for bind and the proteins actin, gamma 1 and

gag we find the following definition: “Mature HIV-1 Nucleocapsid, as well as the

nucleocapsid domain of the HIV-1 Gag polyprotein, binds filamentous actin resulting

in incorporation of actin into virus particles and enhancement of cell motility.”

For each documented protein-protein interaction the database includes informa-

tion about:

• A pair of proteins (PP ),

• The interaction type(s) between them (I), and

2DIP lists only the protein pairs; BIND additionally includes some information about the method
used to provide evidence for the interaction; MIND contains interaction type information but the
vast majority of the entries (99.9% of the 47,000 pairs) are assigned the same type of interaction
(aggregation). These databases are all manually curated.
DIP (Database of Interacting Proteins): http://dip.doe-mbi.ucla.edu
BIND (Biomolecular Interaction Network Database): http://bind.ca
MINT (Molecular Interactions Database): http://160.80.34.4/mint

3There are 1001 descriptions for the 65 interactions, for an average of 15.4 descriptions per protein
(max = 138 for binds, min = 1).
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Interaction #Triples Interaction #Triples
Interacts with 1115 Complexes with 45
Activates 778 Modulates 43
Stimulates 659 Enhances 41
Binds 647 Stabilizes 34
Upregulates 316 Myristoylated by 34
Imported by 276 Recruits 32
Inhibits 194 Ubiquitinated by 29
Downregulates 124 Synergizes with 28
Regulates 86 Co-localizes with 27
Phosphorylates 81 Suppresses 24
Degrades 73 Competes with 23
Induces 52 Requires 22
Inactivates 51

Table 4.1: Number of triples for the most common interactions of the HIV-1 database,
after removing the distinction in directionality and the triples with more than one inter-
action.

• PubMed identification numbers of the journal article(s) describing the interac-

tion(s) (A).

A protein pair PP can have multiple interactions (for example, UNG2 binds to

Gag-Pol and also incorporates it) for an average of 1.9 interactions per PP and a

maximum of 23 interactions, for the pair CDK9 and TAT p14.

I refer to the combination of a protein pair PP and an article A as a “triple.”

The database associates to each triple an interaction type and my goal is to develop

systems that do this automatically. For the example above, the triple [UNG2 Gag-Pol

12667798] is assigned the interaction binds (12667798 being the PubMed number of

the paper providing evidence for this interaction). (To be precise, there are for this

PP , as there are often, multiple articles, three in this case, describing the interaction

binds, thus I have the following three triples to which I associate binds: [UNG2

Gag-Pol 12667798], [UNG2 Gag-Pol 9882380] and [UNG2 Gag-Pol 12458223]. The
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triples [UNG2 Gag-Pol 12670953] [UNG2 Gag-Pol 12458223] describe the interaction

incorporates.)

Journal articles can contain evidence for multiple interactions: there are 984 jour-

nal articles in the database and on average each article is reported to contain evidence

for 5.9 PP (with a maximum number of 90 PP ).

In some cases the database reports multiple different interactions for a given triple.

There are 5369 unique triples in the database and of these 414 (7.7%) have multiple

interactions. I exclude these triples from my analysis; however, I do include articles

and PP s with multiple interactions. In the example above I exclude the triple [UNG2

Gag-Pol 12458223] (to which the database assign both binds and incorporates) but

I include all the others, since the evidence for the different interactions is given by

different articles.

Some of the interactions differ only in the directionality (e.g., regulates and regu-

lated by, inhibits and inhibited by, etc.); I collapsed these pairs of related interactions

into one.4 I did this because the directionality of the interactions was not always

reliable in the database (some pairs were assigned one interaction and the same inter-

action in the opposite direction as well). Table 4.1 shows the list of the 25 interactions

of the HIV-1 database for which there are more than 10 triples. (The most frequent

interaction is the generic interacts with that indicates that the two proteins are known

to interact, without specifying the nature of the interaction.)

For these interactions and for a random subset of the protein pairs PP (around

45% of the total pairs in the database), I downloaded the corresponding PubMed

papers. From these, I extracted all and only those sentences that contain both proteins

from the indicated protein pair. I assigned each of these sentences the corresponding

4This implies that for some interactions, I am not able to infer the different roles of the two
proteins; moreover I considered only the pair “prot1 prot2” or “prot2 prot1,” not both. However,
as described in Section 4.5.3, my algorithm can detect which are the proteins involved in the inter-
actions.
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interaction I from the database (I call this group “papers”).

Nakov et al. (2004) argue that the sentences surrounding citations to related work,

or citances, are a useful resource for BioNLP. Building on that work, I use citances as

an additional form of evidence to determine protein-protein interaction types. For a

given database entry containing PubMed article A, protein pair PP , and interaction

type I, I downloaded a subset of the papers that cite A. From these citing papers,

I extracted all and only those sentences that mention A explicitly; I further filtered

these to include all and only the sentences that contain PP . I labeled each these

sentences with interaction type I (I call this group “citances”).

As an example, for the triple [AIP1 Gag 14519844], I extract from the target

paper A (PubMedID 14519844) the following sentences:

• The interpretation of these results was slightly complicated by the fact that

AIP-1/ALIX depletion by using siRNA likely had deleterious effects on cell vi-

ability , because a Western blot analysis showed slightly reduced Gag expression

at later time points ( fig. 5C ).

• Gag p6 - p6 - , Gag pb - p9 - , and Gag pd - PTAP - complemented HIV - 1

was generated as in fig. 4 , but , in this case , luciferase ( control ) - , Tsg101

- , or AIP-1/ALIX - specific siRNAs were cotransfected .

From the papers that cite A, I extract:

• They also demonstrate that the GAG protein from membrane - containing viruses

, such as HIV , binds to Alix / AIP1 , thereby recruiting the ESCRT machin-

ery to allow budding of the virus from the cell surface ( TARGET CITATION;

CITATION ) .

• Recently , the entire cellular protein network that participates in HIV - 1 budding

was mapped , with TSG101 and AIP1 identified as direct interaction partners
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of the Gag p6 domain ( TARGET CITATION, CITATION, CITATION ) .

where “TARGET CITATION” is the token with which I substitute the reference to

paper A and “CITATION” is the token for all other references.

There are often many different names for the same protein (as for AIP-1 and

ALIX in the examples above). I use LocusLink5 protein identification numbers and

synonym names for each protein, and extract the sentences that contain an exact

match for (some synonym of) each protein. By being conservative with protein name

matching, and by not doing co-reference analysis, I miss many candidate sentences;

however this method is very precise.

On average, for “papers,” I extracted 0.5 sentences per triple (maximum of 79)

and 50.6 sentences per interaction (maximum of 119); for “citances” I extracted 0.4

sentences per triple (with a maximum of 105) and 49.2 sentences per interaction (162

maximum). I required a minimum number (40) of sentences for each interaction

type for both “papers” and “citances”; the 10 interactions of Table 4.2 met this

requirement. I used these sentences to train and test the models described below.6

Since all the sentences extracted from one triple are assigned the same interaction,

I required the sentences in the training and test sets to originate from disjoint triples.

Roughly 75% of the data were used for training and the rest for testing (this is not

exactly 75% because the number of triples per paper is not uniform).

As mentioned above the goal is to automatically associate to each triple an in-

teraction type. The task tackled here is actually slightly more difficult: given some

sentences extracted from article A, assign to A an interaction type I and extract the

proteins PP involved. In other words, for the purpose of classification, we act as if

5LocusLink was recently integrated into Entrez Gene, a unified query environment for genes
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene).

6I also looked at larger chunks of text, in particular, I extracted the sentence containing the
PP along with the previous and the following sentences, and the three consecutive sentences that
contained the PP (the proteins could appear in any of the sentences). However, the results obtained
by using these larger chunks were consistently worse, see discussion in Section 3.4.
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Interaction Papers Citances

Degrades (Degr) 60 63
Synergizes with (SynerW) 86 101
Stimulates (Stim) 103 64
Binds (Bind) 98 324
Inactivates (Inact) 68 92
Interacts with (InterW) 62 100
Requires (Req) 96 297
Upregulates (Upreg) 119 98
Inhibits (Inhib) 78 84
Suppresses (Supp) 51 99
Total 821 1322

Table 4.2: Number of interaction sentences extracted.

we do not have information about the proteins that interact. However, given the way

the sentence extraction was done, all the sentences extracted from A contain the PP .

By using the HIV-1 database as a way of collecting labeled data for training the

models, I make the following rather strong assumption: given article A listed in the

HIV-1 database as evidence for the interaction I between two proteins PP , assume

that every sentence extracted from A that contains these two proteins expresses inter-

action I. Of course, this assumption will not always be correct, and has the side-effect

of introducing noise into the labeled data (in Section 4.6 I examine how much noise),

but it circumvents the need to hand-label all of the sentences in the corresponding

papers in order to train the algorithm.

A hand-assessment of the individual sentences shows that not every sentence that

mentions the target proteins PP actually describes the interaction I (see Section 4.6).

Thus the evaluation on the test set can be done at the document level (to determine if

the algorithm can predict the interaction that a curator would assign to a document

as a whole given the protein pair) and at the individual sentence level to determine

if the algorithm can assign the actual correct interaction to each sentence.
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Note that I assume here that the papers that provide the evidence for the inter-

actions are given, an assumption not usually true in practice.

4.4 Models

For assigning interactions, I used generative graphical models similar to those de-

scribed in Section 3.7.2, with some slight differences. Figure 4.1 shows the generative

models. The nodes labeled “Role” represent the entities (in this case the choices

are PROTEIN and NULL); the children of the role nodes are the words and their

features, thus there are as many role states as there are words in the sentence; the

dynamic model consists of a Markov sequence of states where each state generates

one or multiple observations. This model makes the additional assumption that there

is an interaction present in the sentence (represented by the node “Inter.”) that gen-

erates the role sequence and the observations. (I assume here that there is a single

interaction for each sentence between the proteins.)

The static model is a simple Naive Bayes, in which the node representing the

interaction generates the observable features. Note that this model is slightly different

from the static models described in Section 3.7 in that the model does not include

role information.

The “Role” nodes can be observed or hidden; here they are hidden and marginal-

ized over for the interaction classification (i.e., I had no information regarding which

proteins were involved). In Section 4.5.3 I describe experimental results for the role

extraction task.

I also used a neural network setup with the same settings as that described in

Section 3.7.2.

140



Chapter 4. Labeling protein-protein interactions
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Figure 4.1: Dynamic (DM) and static (NB) graphical models for protein interaction
classification (and role extraction).
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4.5 Results

The task is the following: predict one of the interactions of Table 4.2 for a given triple,

given the sentences extracted for that triple. This is a 10-way classification problem,

a difficult problem and significantly more complex than much of the related work in

which the task is to predict whether there is an interaction or not (see Section 4.2).

The results reported here were obtained using two sets of features:

1. Only words (i.e., in the dynamic model of Figure 4.1 there is only one feature

node per role); results in rows “words” of Table 4.3.

2. Words along with some semantic features: MeSH terms, the GO codes codes

and whether the word is a “molecular function,” a “biological process” or a

“cellular component.”7 In this case the dynamic model DM has three feature

nodes per role. The results for this case are in rows “+sem.” of Table 4.3.

I defined joint probability distributions over these models, estimated using max-

imum likelihood on the training set with a simple absolute discounting smoothing

method. I performed 10-fold cross validation on the training set and I chose the

smoothing parameters for which I obtained the best classification accuracies (aver-

aged over the ten runs) on the training data; the results reported here were obtained

using these parameters on the held-out test sets.8

The evaluation was done on a document-by-document basis. During testing, I

choose the interaction using the following aggregate measures that use the constraint

7GO, the Gene Ontology consists of three structured, controlled vocabularies (ontologies) that
describe gene products. The three organizing principles of GO are molecular function, biological
process and cellular component. http://www.geneontology.org/GO.evidence.shtml.
I used a program that matches strings to gene names and finds the GO codes for the genes.

8I didn’t have enough data to require that the sentences in the training and test sets of the cross
validation procedure originate from disjoint triples (they do originate from disjoint triple in the final
held out data). This may result in a less than optimal choice of the parameters for the aggregate
measures described below.
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Mj Mj* Cf Cf*

All (papers + citances)
Baseline (Mf) 21.8
DM words 60.5 59.7 59.7 59.7

+sem. 58.1 59.7 58.1 61.3
NB words 58.1 58.9 61.3 59.7

+sem. 59.7 58.9 59.7 58.9
NN words 63.7 62.9

+sem. 63.7 62.9
Key 20.1
KeyB 25.8

Papers
Baseline (Mf) 11.1
DM words 57.8 46.7 55.6 55.6

+sem. 40.0 40.0 44.4 53.3
NB words 57.8 57.8 53.3 57.8

+sem. 40.0 40.0 46.7 44.4
NN words 44.4 44.4

+sem. 48.9 48.9
Key 24.4
KeyB 40.0

Citances
Baseline (Mf) 26.1
DM words 53.4 54.5 54.5 55.7

+sem. 60.2 59.1 61.4 57.9
NB words 55.7 55.7 54.5 54.5

+sem. 56.8 55.7 55.7 56.8
NN words 55.8 53.4

+sem. 58.0 58.0
Key 20.4
KeyB 26.1

Table 4.3: Accuracies for classification of the 10 protein-protein interactions of Table
4.2 when evaluating at the document level. Best results shown in boldface. DM: the
dynamic model, NB: the Naive Bayes (Figure 4.1), NN the neural network. For each
model, the first line gives the results when only the words are used as input, the second
line, the results adding the semantic features (MeSH and GO codes). Key: the trigger
word approach, KeyB: same as Key with backing off to the most frequent interaction when
no interaction predicted (see Section 4.5.2). The Baseline (Mf) is accuracy for choosing
the most frequent interaction. Chance is 10%.
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that all sentences coming from the same triple are assigned the same interaction.

• Mj: For each triple, for each sentence of the triple, find the interaction that

maximizes the posterior probability of the interaction given the features; then

assign to all sentences of this triple the most frequent interaction between those

predicted for the individual sentences.

• Mj*: Same as Mj, except that if the interaction predicted is the generic interacts

with, choose instead the next most frequent interaction (retain interacts with

only if it is the only interaction predicted).

• Cf: Retain all the conditional probabilities (i.e., don’t first choose an interaction

per sentence), then for each triple choose the interaction that maximizes the sum

over all the sentences of the triple.

• Cf*: Same as Cf, substituting interacts with with the next most confident

interaction.

Table 4.3 reports the results in terms of classification accuracies averaged across

all interactions, for the cases “all” (sentences from “papers” and “citances” together),

only “papers” and only “citances”; separating “papers” and “citances” allowed us to

analyze the difference in performance when using the sentences from the original

articles and when using those from the articles that cite them.

The accuracies are quite high; the dynamic model achieves around 60% for “all,”

58% for “papers” and 61% for “citances.” The neural net achieves the best results

for “all” with around 64% accuracy.

From the results in Table 4.3 I can make the following observations:

• Accuracy using only “citances” is in most cases higher than the accuracy using
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only “papers.”9 Accuracy of “all” is the highest, perhaps due to the larger

training set for this case.

• The four aggregate measures achieve similar results.

• The performances of the dynamic model DM, the Naive Bayes NB and the NN

are very similar, but the best results were obtained with the dynamic model

DM (except for the case “all,” where the neural net did better).

• Using the semantic features I obtained lower accuracies, especially for “papers”

– but not for “citances” (see Section 3.7.3 for a discussion of the impact of the

MeSH features for the classification of the relations that hold between TREAT

and DIS.) It may be the case that the semantic features used here are not

appropriate for this task, but further analysis is needed.

• All models perform significantly better than the baselines (that are: chance,

most frequent class and a trigger word approach described in Section 4.5.2).

In the confusion matrix in Table 4.4 we can see the accuracies for the individ-

ual interactions for the dynamic model DM, “all” and “Mj.” For three interactions

(degrades, inactivates, suppresses) this model achieves perfect accuracy.

4.5.1 Hiding the protein names

In order to ensure that the algorithm was not over-fitting on the protein names, I ran

an experiment in which I replaced the protein names in all sentences with the token

“PROT NAME.” For example, the sentence: “Selective CXCR4 antagonism by Tat”

became: “Selective PROT NAME2 antagonism by PROT NAME1.”

9Note that, however, the baseline of always choosing the most frequent interaction is higher for
“citances” than for “papers.”
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Prediction Acc.
Truth D Sy St B Ina IW R Up Inh Su (%)
Degrad 5 0 0 0 0 0 0 0 0 0 100.0
Synerg 0 1 0 0 0 1 0 3 3 0 12.5
Stimul 0 0 4 0 0 0 6 0 1 0 36.4
Binds 0 0 0 18 0 4 1 1 3 0 66.7
Inacti 0 0 0 0 9 0 0 0 0 0 100.0
Intera 0 0 4 3 0 5 1 0 1 2 31.2
Requir 0 0 0 0 0 3 3 0 1 1 37.5
Upregu 0 0 0 2 1 0 0 12 2 0 70.6
Inhibi 0 0 0 3 0 0 1 1 12 0 70.6
Suppre 0 0 0 0 0 0 0 0 0 6 100.0

Table 4.4: Confusion matrix for the dynamic model DM for “all,” “Mj.” The overall
accuracy is 60.5%. The numbers indicate the numbers of articles A (for each paper we
have several sentences).

By inspection, over-fitting seems unlikely; the average number of (distinct) inter-

action types per protein is 1.8 (max = 25) and per PP is 1.3 (max = 9); 38% of the

proteins and 20% of the PP s have multiple interaction types. (These numbers are

slightly different from the numbers given in Section 4.3 which are based on the entire

HIV-1 database; here I consider only the PP s I used in my experiments.)

In Table 4.5 the first rows for each model show the results of running the models on

this data (the second rows are the corresponding results taken from Table 4.3 when

the protein names were given, “original”). These results were obtained using only

the words as features. The last column of Table 4.5 show the difference in accuracy

(in percentage) with respect to the original case, for each model averaged over all

evaluation methods.

For “papers” and “citances” there is always a decrease in the classification accu-

racy when I remove the protein names, showing that the protein names do help the

classification. The differences in accuracy in the two cases using “citances” are much

smaller than the differences using “papers” at least for the graphical models. This
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suggests that citation sentences may be more robust for some language processing

tasks and that the models that use “citances” learn better the linguistic context of

the interactions.

4.5.2 Using a “trigger word” approach

As mentioned above, much of the related work in this field makes use of “trigger

words” or “interaction words” (see Section 4.2). In order to (roughly) compare my

work and to build a more realistic baseline, I created a list of 70 keywords that

are representative of the 10 interactions. For example, for the interaction degrade

some of the keywords are “degradation,” “degrade,” for inhibit I have “inhibited,”

“inhibitor,” “inhibitory” and others. I then checked whether a sentence contained

such keywords. If it did, I assigned to the sentence the corresponding interaction. If

it contained more than one keyword corresponding to multiple interactions consisting

of the generic interact with plus a more specific one, I assigned the more specific

interaction; if the two predicted interactions did not include interact with but two

more specific interactions, I did not assign an interaction, since I wouldn’t know how

to choose between them. Similarly, I assigned no interaction if there were more than

two predicted interactions or no keywords present in the sentence. Case “KeyB” is

the “Key” method with back-off: when no interaction was predicted, I assigned to the

sentence the most frequent interaction in the training data. As before, I calculated

the accuracy when I force all the sentences from one triple to be assign the same

interaction, the most frequent interaction among those predicted for the individual

sentences.

KeyB is more accurate than Key and although the KeyB accuracies are higher

than the other baselines, they are significantly lower than those obtained with the

graphical models and the neural net. The low accuracies of the trigger-word based
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Mj Mj* Cf Cf* Dec

All (papers + citances)
DM 60.5 = 59.7 = 60.5+ 59.7 = 0.3%
pn 60.5 59.7 59.7 59.7
NB 59.7 + 59.7 + 59.7 62.1 + 1.4%
pn 58.1 58.9 61.3 59.7
NN 51.6 50.8 -19.1%
pn 63.7 62.9

Papers
DM 44.4 42.2 40.0 42.2 -21.2%
pn 57.8 46.7 55.6 55.6
NB 46.7 44.4 51.1 51.1 -14.5%
pn 57.8 57.8 53.3 57.8
NN 44.4 = 44.4 = 0%
pn 44.4 44.4

Citances
DM 52.3 53.4 53.4 53.4 -2.5%
pn 53.4 54.5 54.5 55.7
NB 53.4 54.5 53.4 52.3 -3.1%
pn 55.7 55.7 54.5 54.5
NN 50.0 52.3 -6.2%
pn 55.8 53.4

Table 4.5: Accuracies of the classification of the 10 protein-protein interactions of Table
4.2 with the protein names removed. For each model, the second lines show the corre-
sponding results, taken from Table 4.3, when the protein names are given. In the last
column, the difference in accuracy (in percentage) with respect to the original case, aver-
aged over all evaluation methods. The “+” signs indicate the cases for which the accuracy
improves removing the protein names, the “=” signs the cases whan the accuracy does
not change. The results reported here are obtained using only the words as features. The
baseline measures, Key and KeyB are the same as Table 4.3.
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methods show that the relation classification task is nontrivial, in the sense that not

all the sentences contain the most obvious word for the interactions, and suggests

that the trigger word approach is insufficient.

4.5.3 Protein name tagger

The dynamic model of Figure 4.1 has the appealing property of simultaneously per-

forming interaction recognition and protein name tagging (also known as role extrac-

tion): the task consists of identifying all the proteins present in the sentence, given a

sequence of words. I assessed a slightly different task: the identification of all the pro-

teins present in the sentence that are involved in the interaction. For instance, in the

following sentence: “These results suggest that Tat- induced phosphorylation of serine

5 by CDK9 might be important after transcription has reached the +36 position, at

which time CDK7 has been released from the complex.” there are three proteins (Tat,

CDK9 and CDK7) but the proteins involved in the interaction that I want to extract

are only Tat and CDK9. Role extraction is a difficult task in general, made here more

difficult for the reason above: CDK7 can be (and in fact is) involved in an interaction

in another sentence (“Tat might regulate the phosphorylation of the RNA polymerase

II carboxyl - terminal domain in pre - initiation complexes by activating CDK7”).

I perform inference with the junction tree algorithm. The F-measure10 achieved

by this model for this task is 0.79 for “all,” 0.67 for “papers” and 0.79 for “citances”

(see Table 4.6); again, the model parameters were chosen with cross validation on

the training test, and “citances” had superior performance. Note that I did not use a

dictionary: the system learned to recognize the protein names using only the training

data. Moreover, my role evaluation is quite strict: every token is assessed and I do not

assign partial credit for constituents for which only some of the words are correctly

10The F-measure is a weighted combination of precision and recall. Here, precision and recall are
given equal weight, that is, F-measure = (2 ∗ PRE ∗REC)/(PRE + REC).
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Recall Precision F-measure

All 0.74 0.85 0.79
Papers 0.56 0.83 0.67

Citances 0.75 0.84 0.79

Table 4.6: F-measures for the dynamic model DM of Figure 4.1 for the task of identifying
the proteins involved in the interactions. (Only words as features.)

labeled. I did not use the information that all the sentences extracted from one triple

contain the same proteins.

Given these promising results (both F-measure and classification accuracies), I

believe that the dynamic model of Figure 4.1 is a good model for performing both

name tagging and interaction classification simultaneously, or either of these task

alone.

4.6 Sentence-level evaluation

In addition to assigning interactions to protein pairs, I am interested in sentence-level

semantics, that is, in determining the interactions that are actually expressed in the

sentence. To test whether the information assigned to the entire document by the

HIV-1 database record can be used to infer information at the sentence level, an an-

notator with biological expertise hand-annotated the sentences from the experiments.

The annotator was instructed to assign to each sentence one of the interactions of

Table 4.2, “not interacting,” or “other” (if the interaction between the two proteins

was not one of Table 4.2).

Of the 2114 sentences that were hand-labeled, 68.3% of them disagreed with the

HIV-1 database label, 28.4% agreed with the database label, and 3.3% were found to

contain multiple interactions between the proteins. Among the 68.3% of the sentences

for which the labels did not agree, 17.4% had the vague interact with relation, 7.4%
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Annotator
DB D Sy St B Ina R Up Inh Su IW Ot NO

Degrad 44 0 2 5 6 5 2 0 23 9 11 6
Synerg 0 78 3 14 0 13 8 0 0 26 31 11
Stimul 0 5 23 12 0 8 7 5 1 26 60 18
Binds 0 6 9 118 0 25 8 10 1 129 77 22
Inacti 0 0 4 25 0 2 4 33 6 14 27 11
Requir 0 5 29 20 0 63 8 54 0 85 80 33
Upregu 0 4 24 0 0 0 124 2 0 21 32 4
Inhibi 0 8 4 8 2 2 2 43 9 24 37 19
Suppre 3 0 0 1 5 0 0 42 34 33 24 4
Intera 0 1 5 28 1 12 6 1 1 49 27 28
Acc. (%) 93.6 72.9 22.3 51.1 0 48.5 73.4 22.7 45.3 11.8

Table 4.7: Confusion matrix between the hand-assigned interactions and the interactions
that we obtain from the HIV-1 database. Ot is “other” (if the interaction between the two
proteins in the sentence was not one of Table 4.2), NO is “not interacting.” In the last
row Acc. is the accuracy of using the database to label the individual sentences (assuming
the annotator’s labels to be the true labels).

did not contain any interaction and 43.5% had an interaction different from that

specified by the triple.

In Table 4.7 we report the mismatch between the two sets of labels. The total

agreement of 38.9%11 provides a useful baseline of using a database for the labeling at

the sentence level. It may be the case that certain interactions tend to be biologically

related and thus tend to co-occur (upregulate and stimulate or inactivate and inhibit,

for example).

I investigated a few of the cases in which the labels were “suspiciously” different,

for example a case in which the database interaction was stimulate but the annotator

found the same proteins to be related by inhibit as well. It turned out that the authors

of the article found little evidence for this interaction (and suggested instead inhibit),

suggesting an error in the database. In another case the database interaction was

11The accuracy without including the vague interact with is 49.4%.
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require but the authors of the article, while supporting this, found that under certain

conditions (when a protein is too abundant) the interaction changes to one of inhibit.

In another complex case, an inhibition is caused by a concurrent upregulation. It is

interesting that I was able to find controversial facts about protein interactions just

by looking at the confusion matrix of Table 4.7.

For 72% of the triples, at least one of the sentences extracted from the target

paper were found by the annotator to contain the interaction given by the database.

I read four of the papers for which none of the sentences extracted were found to

contain the interaction given by the database and did find sentences describing that

interaction, but my system had failed to extract them.

I also trained the systems using the hand-labeled sentences. The goal in this case

is to determine the interaction expressed for each sentence. This is a difficult task, for

some sentences it took the annotator several minutes to understand them and decide

which interaction applied: the language is difficult, and the task presupposes a lot of

background knowledge in the protein and protein-interaction domains.

Table 4.8 shows the results on running the classification models on the six in-

teractions for which I had more that 40 examples in the training sets. Again, the

sentences from “papers” are especially difficult to classify; the best result for “paper”

is 36.7% accuracy versus 63.2% accuracy for “citances.” In this case the difference

in performance of “papers” and “citances” is bigger than for the previous task of

document classification. In Table 4.9 the confusion matrix for the case “citances,”

using the Naive Bayes model.

4.7 Conclusions

I tackled an important and difficult task: the classification of different interaction

types between proteins in text. A solution to this problem would have an impact on
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All
DM 48.9
NB 47.1
NN 52.9

Bas. (Mf) 36.3
Key 30.5

KeyB 46.2
Papers

DM 28.9
NB 33.3
NN 36.7

Bas. (Mf) 34.4
Key 18.9

KeyB 36.6
Citances

DM 47.9
NB 53.4
NN 63.2

Bas. (Mf) 37.6
Key 38.3

KeyB 52.6

Table 4.8: Classification accuracies when the systems were trained and tested on the
hand labeled sentences. The task was to predict the interaction for each sentence; the
evaluation was done on a sentence-by-sentence basis. Best results shown in boldface.
Here I considered only the six interactions for which I could find more that 40 examples
for the training sets (see Table 4.9). Only words as features. Bas. (Mf) is the accuracy
for choosing the most frequent interaction. Chance is 16.7.

a variety of important challenges in modern biology. The graphical models I imple-

mented can simultaneously perform protein name tagging and relation identification,

achieving high accuracy on both problems. I also found evidence supporting the

hypothesis that citation sentences are a good source of training data, most likely be-

cause they provide a concise and precise way of summarizing facts in the bioscience

literature.
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Prediction Acc.
Truth Intera Upreg NO Inhib Stimu Binds (%)
Intera 25 5 5 6 1 8 50.0
Upregu 2 11 0 1 0 1 73.3
NO 1 0 6 1 1 0 66.7
Inhibi 0 1 1 17 0 1 85.0
Stimul 2 3 1 3 0 1 0.0
Binds 7 1 5 4 0 12 41.4

Table 4.9: Confusion matrix for the Naive Bayes NB for “citances,” with the system
trained with the hand labeled sentences. The overall accuracy is 53.4%. NO stands for
“no interaction.”
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Conclusions

5.1 Contributions of this thesis

This thesis described the contribution of my work in the field of computational se-

mantics. In particular, I described three projects that extract entities and relations

from bioscience text.

The first project tackled the problem of assigning semantic relations to noun com-

pounds and in Chapter 2, I described two approaches to this problem. For the first

approach (Section 2.6), I identified several semantic relations for a collection of NCs

extracted from medical journals and proposed a classification algorithm for the au-

tomatic classification of the relations. In this task of multi-class classification (with

18 classes) I achieved an accuracy of about 62%. These results can be compared

with Vanderwende (1994) who reports an accuracy of 52% with 13 classes and Lap-

ata (2000) whose algorithm achieves about 80% accuracy for a much simpler binary

classification. The second approach described in Section 2.7 was linguistically moti-

vated; I showed that mere membership within a particular sub-branch of a domain

specific lexical hierarchy is sufficient in many cases for assignment of the appropriate
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semantic relation, obtaining a classification accuracy of approximately 90%. I also

showed how most of the related work relies on hand-written rules and/or addresses

the easier task of classification with much fewer classes.

In Chapter 3, I described my work for the tasks of role and relation extraction,

proposing several machine learning techniques that were shown to achieve good re-

sults for these difficult tasks: for the task of role extraction I achieved an F-measure

of 70% and for the task of relation recognition an accuracy of 80%. I addressed the

problem (rarely tackled in the related work) of distinguish between different relations

that can occur between the same semantic entities. Most of the related work on rela-

tionship extraction assumes the entity extraction task performed by another system

and the entities of interests therefore are given as input. My models do not make

this assumption and perform role and relation extraction simultaneously. When the

entities are given, the models proposed achieved around 97% accuracy for the task of

distinguishing between eight semantic relations.

Finally, Chapter 4 tackled the identification of protein interactions; the accuracy

achieved was 64% for a ten-class distinction. This work also introduced the use of an

existing curated database for gathering labeled data and the use of citations. This

work represents a significant improvement over the related work: some approaches

simply report that a relation exists between two proteins but do not determine which

relation holds, and most others use “trigger words”and/or hand-built templates.

The contribution of this thesis is to have applied several rigorous methods to

these difficult, real-life problems. Some of the machine learning methods (the graph-

ical models of Section 3.7) were designed and developed by me especially for these

problems. The results obtained were quite encouraging.
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5.2 Directions for future research

Many open questions and research directions remain, of course.

The relations and entities extracted by the algorithms described in this thesis are

intended to be combined to produce larger propositions that can then be used in a

variety of interpretation paradigms, such as abductive reasoning or inductive logic

programming.

Other important issues relevant to the task of extracting information from text,

not tackled in this thesis are the following: the access to huge amount of textual

data, the connection between several databases and/or text collections for linking

different pieces of information and the related problem of a system architecture to

support multiple layers of annotation on text, the development of effective interface,

and the challenge of finding a good knowledge representation and the right inference

procedures.

The hope is to have one day an unifying theory that explains the process of under-

standing (and generating) meaning in linguistic utterances. We do not know whether

we need to understand how humans process language to be able do so computation-

ally, but we are still very far from this.

Meanwhile, in this thesis, I tackle some practical but difficult and important

problems, I propose methods to address them achieving results good enough to be

useful for a actual implementation of the systems. My hope is that this can be

considered progress, too.
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